ON
TOPIC: SEQUENCES AND THEIR CONVERGENCES

SUB-TOPIC: SUBSEQUENCES AND THE BOLZANO WEIRSTRASS THEOREM WITH SOME APPLICATIONS

FOR
B.Sc. $2^{\text {nd }}$ and $4^{\text {th }}$ SEMESTER (Honours/ Major)

Introduction

Roughly, a subsequence of a sequence is another sequence obtained by selecting some terms from the given sequence following some specific rule or selection procedure. There is a definite purpose in constructing such subsequences from a given sequence. Mainly, subsequences are often found useful for the purpose of establishing the convergence or divergence of the given sequence. In this discourse, we will state and prove a very important theorem known as the Bolzano-Weirstrass Theorem, which is basically an existence theorem and is also very useful to establish several significant results in analysis.

Subsequences: Definition

Let $X=\left\langle x_{n}\right\rangle$ be a sequence of real numbers and $n_{1}<n_{2}<n_{3}<n_{4}<\ldots .<n_{k}<\ldots .$. be a strictly increasing sequence of natural numbers. Then the sequence $X^{\prime}=\left\langle x_{n_{k}}\right\rangle=\left\langle x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, \ldots ..\right\rangle$ is called a subsequence of X.

For example, consider the sequence $X=\left\langle x_{n}=\frac{1}{n}: n \in \mathrm{~N}\right\rangle$. Then the following are some sequences which are subsequences of the sequence $X=\left\langle x_{n}=\frac{1}{n}\right\rangle$.

$$
\begin{aligned}
& \left.\left\langle 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8} \ldots \ldots \ldots . .\right\rangle,\left\langle 1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9} \ldots \ldots \ldots . .\right\rangle,\left\langle 1, \frac{1}{2}, \frac{1}{2^{2}}, \frac{1}{2^{3}}, \frac{1}{2^{4}} \ldots \ldots \ldots . .\right\rangle\right\rangle \\
& \left.\left\langle 1, \frac{1}{3}, \frac{1}{6}, \frac{1}{9}, \frac{1}{12} \ldots \ldots \ldots . .\right\rangle,\left\langle 1, \frac{1}{5}, \frac{1}{10}, \frac{1}{15}, \frac{1}{20} \ldots \ldots \ldots . .\right\rangle,\left\langle 1, \frac{1}{3}, \frac{1}{3^{2}}, \frac{1}{3^{3}}, \frac{1}{3^{4}} \ldots \ldots \ldots . .\right\rangle\right\rangle
\end{aligned}
$$

Theorem 1: If a sequence $X=\left\langle x_{n}\right\rangle$ converges to a real number x, then any subsequence of it also converges to x.

Proof: Let the real sequence $X=\left\langle x_{n}\right\rangle$ converges to the real number x and $X^{\prime}=\left\langle x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, \ldots ..\right\rangle$ be a subsequence of it. We prove that the subsequence $X^{\prime}=\left\langle x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, \ldots ..\right\rangle$ also converges to x.

Let $\varepsilon>0$ be arbitrary. Then,

$$
x_{n} \rightarrow x, \varepsilon>0 \Rightarrow \exists n_{0} \in \mathrm{~N} \text { s.t. }\left|x_{n}-x\right|<\varepsilon, \forall n \geq n_{0}
$$

Now, $X^{\prime}=\left\langle x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, \ldots ..\right\rangle$ is a subsequence $\Rightarrow n_{1}<n_{2}<n_{3}<n_{4}<\ldots<n_{k}<\ldots \ldots$.

$$
\Rightarrow \exists n_{p} \in \mathrm{~N} \text { s.t. } n_{p} \geq n_{0}
$$

Then, clearly, $\left|x_{n_{k}}-x\right|<\varepsilon, \forall n_{k} \geq n_{p} \geq n_{0}$ and hence, $x_{n_{k}} \rightarrow x$.
Application of the above Theorem:
Example 1: If $0<a<1$, prove that $\lim \left(a^{n}\right)=0$.
Proof: Let $X=\left\langle x_{n}=a^{n}: n \in \mathrm{~N}\right\rangle$. Then, we have,

$$
0<a<1 \Rightarrow 0<a^{n+1}<a^{n}, \forall n \in \mathrm{~N} \Rightarrow x_{n+1}<x_{n}, \forall n \in \mathrm{~N} .
$$

So, it is clear that $X=\left\langle x_{n}=a^{n}: n \in \mathrm{~N}\right\rangle$ is a decreasing sequence of real numbers.
Further, $0<a<1 \Rightarrow 0<a^{n}<1, \forall n \in \mathrm{~N} \Rightarrow 0<x_{n}<1, \forall n \in \mathrm{~N} \Rightarrow\left\langle x_{n}\right\rangle$ is bounded.
So, by monotone convergence theorem $X=\left\langle x_{n}=a^{n}: n \in \mathrm{~N}\right\rangle$ is convergent. Let $\lim \left(x_{n}\right)=x$.
Again, we have, $x_{2 n}=a^{2 n}=\left(a^{n}\right)^{2}=\left(x_{n}\right)^{2}, \forall n \in \mathrm{~N}$ and the sequence $X^{\prime}=\left\langle x_{2 n}\right\rangle$ is clearly a subsequence of $X=\left\langle x_{n}=a^{n}: n \in \mathrm{~N}\right\rangle$. So, by the above theorem,

$$
\begin{aligned}
& x=\lim \left(x_{n}\right)=\lim \left(x_{2 n}\right)=\lim \left(a^{2 n}\right)=\lim \left(a^{n} \cdot a^{n}\right)=\lim \left(a^{n}\right) \cdot \lim \left(a^{n}\right)=x \cdot x=x^{2} \\
& \Rightarrow x=x^{2} \\
& \Rightarrow x=0 \text { or } 1
\end{aligned}
$$

Since, the sequence is decreasing and bounded above by 1 , so, we have, $x=\lim \left(a^{n}\right)=0$.
Example 1: If $c>1$, prove that $\lim \left(c^{1 / n}\right)=1$.
Proof: Let $X=\left\langle x_{n}=c^{1 / n}: n \in \mathrm{~N}\right\rangle$. Then, we have,

$$
c>1 \Rightarrow c^{\frac{1}{n}}>c^{\frac{1}{n+1}}, \forall n \in \mathrm{~N} \Rightarrow x_{n+1}<x_{n}, \forall n \in \mathrm{~N} .
$$

So, it is clear that $X=\left\langle x_{n}=c^{\frac{1}{n}}: n \in \mathrm{~N}\right\rangle$ is a decreasing sequence of real numbers. Further, $c>1 \Rightarrow c^{\frac{1}{n}}>1, \forall n \in \mathrm{~N} \Rightarrow x_{n}>1, \forall n \in \mathrm{~N} \Rightarrow\left\langle x_{n}\right\rangle$ is bounded below.

So, by monotone convergence theorem $X=\left\langle x_{n}=c^{\frac{1}{n}}: n \in \mathrm{~N}\right\rangle$ is convergent. Let $\lim \left(x_{n}\right)=x$.
Again, we have, $x_{2 n}=c^{\frac{1}{2 n}}=\left(c^{\frac{1}{n}}\right)^{\frac{1}{2}}=\left(x_{n}\right)^{\frac{1}{2}}, \quad \forall n \in \mathrm{~N}$ and the sequence $X^{\prime}=\left\langle x_{2 n}\right\rangle$ is clearly a subsequence of $X=\left\langle x_{n}=c^{\frac{1}{n}}: n \in \mathrm{~N}\right\rangle$. So, by the above theorem,

$$
\begin{aligned}
& x=\lim \left(x_{n}\right)=\lim \left(x_{2 n}\right)=\lim \left(x_{n}\right)^{\frac{1}{2}}=\left[\lim \left(x_{n}\right)\right]^{\frac{1}{2}}=x^{\frac{1}{2}} \\
& \Rightarrow x=x^{2} \\
& \Rightarrow x=0 \text { or } 1
\end{aligned}
$$

Since, the sequence is decreasing and bounded below by 1 , so, we have, $x=\lim \left(c^{1 / n}\right)=1$.

Negation of the Definition of Convergence:

The following theorem gives the negation of the definition of convergence and it leads to a convenient method to establish the divergence of a sequence.

Theorem: For a sequence $X=\left\langle x_{n}\right\rangle$ of real numbers, the following statements are equivalent.
i) The sequence $X=\left\langle x_{n}\right\rangle$ does not converge to $x \in R$.
ii) There exists an $\varepsilon>0$ s.t. for any $k \in \mathrm{~N}, \exists n_{k} \in \mathrm{~N}$ s.t. $n_{k}>k$ and $\left|x_{n_{k}}-x\right| \geq \varepsilon$
iii) There exists an $\varepsilon>0$ and a subsequence $X^{\prime}=\left\langle x_{n_{k}}\right\rangle$ of the sequence $X=\left\langle x_{n}\right\rangle$ such that $\left|x_{n_{k}}-x\right| \geq \varepsilon$ for all $k \in \mathrm{~N}$.

Divergence criteria

If a sequence $X=\left\langle x_{n}\right\rangle$ of real numbers has either of the following properties, then X is divergent.
i) $\quad \mathrm{X}$ has two convergent subsequences whose limits are not equal.
ii) $\quad \mathrm{X}$ is unbounded.

Applications:

In the following examples, we will see nice applications of the above divergence criteria.

Examples:

A) The sequence $X=\left\langle(-1)^{n}\right\rangle=\langle-1,1,-1,1,-1, \ldots$.$\rangle is divergent.$

Proof: Here, the subsequences $X^{\prime}=\langle-1,-1,-1,-1, \ldots \ldots .$.$\rangle and X^{\prime \prime}=\langle 1,1,1, \ldots \ldots .$.$\rangle of$ the sequence $X=\left\langle(-1)^{n}\right\rangle=\langle-1,1,-1, \ldots \ldots$.$\rangle are convergent and converge to the limits$ -1 and 1 respectively. Thus two convergent subsequences of the given sequence converge to two different limits. So, by divergence criteria, the sequence X must be divergent.
B) The sequence $X=\left\langle 1, \frac{1}{2}, 3, \frac{1}{4}, 5, \frac{1}{6}, \ldots \ldots\right\rangle$ is divergent.

Proof: Here the sequence $X=\left\langle 1, \frac{1}{2}, 3, \frac{1}{4}, 5, \frac{1}{6}, \ldots \ldots.\right\rangle$ is such that

$$
x_{n}=n \text { for } n \text { odd and } x_{n}=\frac{1}{n} \text { for } n \text { even }
$$

For odd n, the values of the terms will increase abundantly. So, the sequence is unbounded and hence by divergence criteria, it is divergent.
C) The sequence $X=\langle\sin (n): n \in \mathrm{~N}\rangle$ is divergent. (H.W.)

The existence of monotone sequences:
Though every real sequence is not a monotone sequence, we can show that every such sequence has a monotone subsequence. The following theorem establishes this fact clearly.

The Monotone Subsequence Theorem: Every sequence of real numbers has a monotone subsequence.

Proof: Let $X=\left\langle x_{n}: n \in \mathrm{~N}\right\rangle$ be a real sequence. We now construct a monotone subsequence of this sequence.

Let us first define a term "peak" which will help for our purpose.
If $x_{m} \geq x_{n}, \forall n \geq m$, then x_{m} is called a peak. That is, if for some $m \in \mathrm{~N}$, all the terms of the sequence after m-terms never exceeds x_{m}, then it is a peak. Here, we note that, by definition, every term of a decreasing sequence is always a peak and no term of an increasing sequence is a peak. Then, depending on the number of peaks, there may arise two cases: Case I: The sequence has infinitely many peaks and Case II: the sequence has finite number of peaks.

Case I: Let $X=\left\langle x_{n}: n \in \mathrm{~N}\right\rangle$ has infinitely many peaks and let the peaks, after listing them by increasing subscripts, be $x_{m_{1}}, x_{m_{2}}, x_{m_{3}}, x_{m_{4}}, \ldots$. Since, each term of this list is a peak, so,

$$
x_{m_{1}}>x_{m_{2}}>x_{m_{3}}>x_{m_{4}}>x_{m_{5}}>x_{m_{6}}>x_{m_{7}}>
$$

\qquad
Therefore, the subsequence $\left\langle x_{m_{1}}, x_{m_{2}}, x_{m_{3}}, x_{m_{4}}, \ldots \ldots\right\rangle=\left\langle x_{m_{n}}: n \in \mathrm{~N}\right\rangle$ of peaks obtained in this way is a decreasing subsequence of X.

Case II: Let $X=\left\langle x_{n}: n \in \mathrm{~N}\right\rangle$ has finite number of peaks including no peak at all.
Let, in increasing subscripts, the peaks are listed as $x_{m_{1}}, x_{m_{2}}, x_{m_{3}}, \ldots, x_{m_{k}}$. Further, let, $s_{1}=m_{r}+1$ be the first index beyond the last peak. Then, $x_{s_{1}}$ is not a peak and hence there exists $s_{2}>s_{1}$ such that $x_{s_{1}}<x_{s_{2}}$. Since, $x_{s_{2}}$ is not a peak, so there exists $s_{3}>s_{2}$ such that $x_{s_{2}}<x_{s_{3}}$. Continuing in this way, we obtain an increasing subsequence $\left\langle x_{s_{n}}: n \in \mathrm{~N}\right\rangle$ of X.

Note: The above theorem can be applied to prove Bolzano-Weirstrass Theorem.
The Bolzano-Weirstrass Theorem: A bounded sequence of real numbers has a convergent subsequence.

First Proof: Using Monotone Subsequence Theorem:

Let $X=\left\langle x_{n}: n \in \mathrm{~N}\right\rangle$ be a bounded real sequence. By the Monotone Subsequence Theorem, the sequence X has a monotonic subsequence $X^{\prime}=\left\langle x_{n_{k}}\right\rangle$. Since X is a bounded sequence, so, every subsequence of it is clearly bounded and hence $X^{\prime}=\left\langle x_{n_{k}}\right\rangle$ is bounded. Thus $X^{\prime}=\left\langle x_{n_{k}}\right\rangle$ is a bounded monotonic sequence. Therefore, by the Monotone Convergence Theorem, $\left\langle x_{n_{k}}\right\rangle$ is convergent. Hence, the theorem follows.

Second Proof: Using nested interval Theorem:

Let $X=\left\langle x_{n}: n \in \mathrm{~N}\right\rangle$ be a bounded real sequence. Then, there an interval $I_{1}=[a, b]$ such that $X=\left\langle x_{n}: n \in \mathrm{~N}\right\rangle \subset I=[a, b]$. Take $n_{1}=1$.

Bisect the interval $I_{1}=[a, b]$ into two subintervals I_{11} and I_{12}. Also, let us divide the set of indices $\{n \in \mathrm{~N}: n>1\}$ into two parts:

$$
A_{1}=\left\{n \in \mathrm{~N}: n>n_{1}, x_{n} \in I_{11}\right\}, B_{1}=\left\{n \in \mathrm{~N}: n>n_{1}, x_{n} \in I_{12}\right\}
$$

Then, at least one of $A_{1} \& B_{1}$ is infinite. W.L.O.G. (without loss of generality), let, B_{1} be infinite. Then, label $I_{12}=I_{2}$ and let n_{2} be the smallest natural number in B_{1}.

Again, bisect the interval I_{2} into two subintervals I_{21} and I_{22}. Also, let us divide the set of natural numbers $\left\{n \in \mathrm{~N}: n>n_{2}\right\}$ into two parts:

$$
A_{2}=\left\{n \in \mathrm{~N}: n>n_{2}, x_{n} \in I_{21}\right\}, B_{2}=\left\{n \in \mathrm{~N}: n>n_{2}, x_{n} \in I_{22}\right\}
$$

Then, at least one of $A_{2} \& B_{2}$ is infinite. W.L.O.G. (without loss of generality), let, A_{2} be infinite. Then, label $I_{21}=I_{3}$ and let n_{3} be the smallest natural number in A_{2}.

Continuing in this process, we obtain a nested sequence $I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq$ \qquad .of intervals and a subsequence $\left\langle x_{n_{k}}: n_{k} \in \mathrm{~N}\right\rangle$ of X such that $x_{n_{k}} \in I_{k}$ for all $k \in \mathrm{~N}$. Here, we note that $\left|I_{k}\right|=(b-a) / 2^{k-1}$. Then, by nested interval property, there exists a unique common point $x \in I_{k}, \forall k \in \mathrm{~N}$.

Now, $x_{n_{k}}, x \in I_{k}, \forall k \in \mathrm{~N} \Rightarrow\left|x_{n_{k}}-x\right| \leq(b-a) / 2^{k-1} \rightarrow 0$ as $k \rightarrow \infty$
So, it follows that $x_{n_{k}} \rightarrow x$ as $k \rightarrow \infty$. i.e., the subsequence $\left\langle x_{n_{k}}: n_{k} \in \mathrm{~N}\right\rangle$ is convergent. Hence the theorem follows.

Theorem: If a bounded sequence $X=\left\langle x_{n}: n \in \mathrm{~N}\right\rangle$ of real numbers be such that every convergent subsequence of it converges to x, then the sequence X itself converges to x.

Proof: Let $M>0$ be a bound for the sequence X such that $\left|x_{n}\right| \leq M, \forall n \in \mathrm{~N}$.
Now, if $X=\left\langle x_{n}: n \in \mathrm{~N}\right\rangle$ does not converge to x, then, there exists $\varepsilon>0$ and subsequence $X^{\prime}=\left\langle x_{n_{k}}\right\rangle$ of X such that $\left|x_{n_{k}}-x\right| \geq \varepsilon, \forall k \in \mathrm{~N}$. \qquad
Since, $X^{\prime}=\left\langle x_{n_{k}}\right\rangle$ is a subsequence of X, the number $M>0$ is also a bound for $X^{\prime}=\left\langle x_{n_{k}}\right\rangle$. Hence, by Bolzano-Weirstrass Theorem, $X^{\prime}=\left\langle x_{n_{k}}\right\rangle$ has convergent subsequence $X^{\prime \prime}$, say. Then, it is also a convergent subsequence of X and so, by our hypothesis, $X^{\prime \prime}$ converges to x.

Thus its terms ultimately belong to the ε-neighbourhood of x which contradicts (1).
So, the theorem follows.

