LECTURE NOTE-3

ON

TOPIC: SEQUENCES AND THEIR CONVERGENCES

SUB-TOPIC: SUBSEQUENCES AND THE BOLZANO WEIRSTRASS THEOREM

WITH SOME APPLICATIONS

FOR

B.Sc. 2nd and 4th SEMESTER (Honours/ Major)

Prepared By: DR. ANANDARAM BURHAGOHAIN

JAGIROAD COLLEGE, JAGIROAD

Introduction

Roughly, a subsequence of a sequence is another sequence obtained by selecting some terms from the given sequence following some specific rule or selection procedure. There is a definite purpose in constructing such subsequences from a given sequence. Mainly, subsequences are often found useful for the purpose of establishing the convergence or divergence of the given sequence. In this discourse, we will state and prove a very important theorem known as the Bolzano-Weirstrass Theorem, which is basically an existence theorem and is also very useful to establish several significant results in analysis.

Subsequences: Definition

Let $X = \langle x_n \rangle$ be a sequence of real numbers and $n_1 < n_2 < n_3 < n_4 < \dots < n_k < \dots$ be a strictly increasing sequence of natural numbers. Then the sequence $X' = \langle x_{n_k} \rangle = \langle x_{n_1}, x_{n_2}, x_{n_3}, \dots \rangle$ is called a subsequence of X.

For example, consider the sequence $X = \left\langle x_n = \frac{1}{n} : n \in \mathbb{N} \right\rangle$. Then the following are some sequences which are subsequences of the sequence $X = \left\langle x_n = \frac{1}{n} \right\rangle$.

$$\left< 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \dots, \right>, \left< 1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \dots, \right>, \left< 1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}, \dots, \right> \right>$$

$$\left< 1, \frac{1}{3}, \frac{1}{6}, \frac{1}{9}, \frac{1}{12}, \dots, \right>, \left< 1, \frac{1}{5}, \frac{1}{10}, \frac{1}{15}, \frac{1}{20}, \dots, \right>, \left< 1, \frac{1}{3}, \frac{1}{3^2}, \frac{1}{3^3}, \frac{1}{3^4}, \dots, \right>$$

Theorem 1: If a sequence $X = \langle x_n \rangle$ converges to a real number *x*, then any subsequence of it also converges to *x*.

Proof: Let the real sequence $X = \langle x_n \rangle$ converges to the real number x and $X' = \langle x_{n_1}, x_{n_2}, x_{n_3}, \dots \rangle$ be a subsequence of it. We prove that the subsequence $X' = \langle x_{n_1}, x_{n_2}, x_{n_3}, \dots \rangle$ also converges to x.

Let $\varepsilon > 0$ be arbitrary. Then,

$$x_n \to x, \varepsilon > 0 \Longrightarrow \exists n_0 \in \mathbb{N} \ s.t. \ |x_n - x| < \varepsilon, \ \forall n \ge n_0$$

Now, $X' = \langle x_{n_1}, x_{n_2}, x_{n_3}, \dots \rangle$ is a subsequence $\Rightarrow n_1 < n_2 < n_3 < n_4 < \dots < n_k < \dots$

$$\Rightarrow \exists n_p \in \mathbf{N} \ s.t. \ n_p \ge n_0$$

Then, clearly, $|x_{n_k} - x| < \varepsilon$, $\forall n_k \ge n_p \ge n_0$ and hence, $x_{n_k} \to x$.

Application of the above Theorem:

Example 1: If 0 < a < 1, prove that $\lim (a^n) = 0$.

Proof: Let $X = \langle x_n = a^n : n \in \mathbb{N} \rangle$. Then, we have,

$$0 < a < 1 \Longrightarrow 0 < a^{n+1} < a^n, \ \forall \ n \in \mathbb{N} \Longrightarrow x_{n+1} < x_n, \ \forall \ n \in \mathbb{N}.$$

So, it is clear that $X = \langle x_n = a^n : n \in \mathbb{N} \rangle$ is a decreasing sequence of real numbers.

Further, $0 < a < 1 \Longrightarrow 0 < a^n < 1$, $\forall n \in \mathbb{N} \Longrightarrow 0 < x_n < 1$, $\forall n \in \mathbb{N} \Longrightarrow \langle x_n \rangle$ is bounded.

So, by monotone convergence theorem $X = \langle x_n = a^n : n \in \mathbb{N} \rangle$ is convergent. Let $\lim(x_n) = x$.

Again, we have, $x_{2n} = a^{2n} = (a^n)^2 = (x_n)^2$, $\forall n \in \mathbb{N}$ and the sequence $X' = \langle x_{2n} \rangle$ is clearly a subsequence of $X = \langle x_n = a^n : n \in \mathbb{N} \rangle$. So, by the above theorem,

$$x = \lim(x_n) = \lim(x_{2n}) = \lim(a^{2n}) = \lim(a^n, a^n) = \lim(a^n) \cdot \lim(a^n) = x \cdot x = x^2$$
$$\Rightarrow x = x^2$$
$$\Rightarrow x = 0 \text{ or } 1$$

Since, the sequence is decreasing and bounded above by 1, so, we have, $x = \lim (a^n) = 0$.

Example 1: If c > 1, prove that $\lim_{n \to \infty} (c^{1/n}) = 1$.

Proof: Let $X = \langle x_n = c^{1/n} : n \in \mathbb{N} \rangle$. Then, we have,

$$c > 1 \Longrightarrow c^{\frac{1}{n}} > c^{\frac{1}{n+1}}, \ \forall \ n \in \mathbb{N} \Longrightarrow x_{n+1} < x_n, \ \forall \ n \in \mathbb{N}.$$

So, it is clear that $X = \left\langle x_n = c^{\frac{1}{n}} : n \in \mathbb{N} \right\rangle$ is a decreasing sequence of real numbers. Further, $c > 1 \Rightarrow c^{\frac{1}{n}} > 1, \forall n \in \mathbb{N} \Rightarrow x_n > 1, \forall n \in \mathbb{N} \Rightarrow \left\langle x_n \right\rangle$ is bounded below. So, by monotone convergence theorem $X = \left\langle x_n = c^{\frac{1}{n}} : n \in \mathbb{N} \right\rangle$ is convergent. Let $\lim(x_n) = x$.

Again, we have, $x_{2n} = c^{\frac{1}{2n}} = \left(c^{\frac{1}{n}}\right)^{\frac{1}{2}} = (x_n)^{\frac{1}{2}}, \quad \forall n \in \mathbb{N} \text{ and the sequence } X' = \langle x_{2n} \rangle \text{ is clearly a}$ subsequence of $X = \left\langle x_n = c^{\frac{1}{n}} : n \in \mathbb{N} \right\rangle$. So, by the above theorem, $x = \lim(x_n) = \lim(x_{2n}) = \lim(x_n)^{\frac{1}{2}} = [\lim(x_n)]^{\frac{1}{2}} = x^{\frac{1}{2}}$ $\Rightarrow x = x^2$

$$\Rightarrow x = 0 \text{ or } 1$$

Since, the sequence is decreasing and bounded below by 1, so, we have, $x = \lim (c^{1/n}) = 1$.

Negation of the Definition of Convergence:

The following theorem gives the negation of the definition of convergence and it leads to a convenient method to establish the divergence of a sequence.

Theorem: For a sequence $X = \langle x_n \rangle$ of real numbers, the following statements are equivalent.

- i) The sequence $X = \langle x_n \rangle$ does not converge to $x \in R$.
- ii) There exists an $\varepsilon > 0$ s. t. for any $k \in \mathbb{N}$, $\exists n_k \in \mathbb{N}$ s. t. $n_k > k$ and $|x_{n_k} x| \ge \varepsilon$
- iii) There exists an $\varepsilon > 0$ and a subsequence $X' = \langle x_{n_k} \rangle$ of the sequence $X = \langle x_n \rangle$ such that $|x_{n_k} x| \ge \varepsilon$ for all $k \in \mathbb{N}$.

Divergence criteria

If a sequence $X = \langle x_n \rangle$ of real numbers has either of the following properties, then X is divergent.

- i) X has two convergent subsequences whose limits are not equal.
- ii) X is unbounded.

Applications:

In the following examples, we will see nice applications of the above divergence criteria.

Examples:

A) The sequence $X = \langle (-1)^n \rangle = \langle -1, 1, -1, 1, -1, \dots \rangle$ is divergent. Proof: Here, the subsequences $X' = \langle -1, -1, -1, -1, \dots \rangle$ and $X'' = \langle 1, 1, 1, \dots \rangle$ of

the sequence $X = \langle (-1)^n \rangle = \langle -1, 1, -1, \dots \rangle$ are convergent and converge to the limits -1 and 1 respectively. Thus two convergent subsequences of the given sequence converge to two different limits. So, by divergence criteria, the sequence X must be divergent.

B) The sequence $X = \left\langle 1, \frac{1}{2}, 3, \frac{1}{4}, 5, \frac{1}{6}, \dots \right\rangle$ is divergent.

Proof: Here the sequence $X = \left\langle 1, \frac{1}{2}, 3, \frac{1}{4}, 5, \frac{1}{6}, \dots \right\rangle$ is such that

$$x_n = n$$
 for n odd and $x_n = \frac{1}{n}$ for n even

For odd n, the values of the terms will increase abundantly. So, the sequence is unbounded and hence by divergence criteria, it is divergent.

C) The sequence $X = \langle \sin(n) : n \in \mathbb{N} \rangle$ is divergent. (H.W.)

The existence of monotone sequences:

Though every real sequence is not a monotone sequence, we can show that every such sequence has a monotone subsequence. The following theorem establishes this fact clearly.

The Monotone Subsequence Theorem: Every sequence of real numbers has a monotone subsequence.

Proof: Let $X = \langle x_n : n \in \mathbb{N} \rangle$ be a real sequence. We now construct a monotone subsequence of this sequence.

Let us first define a term "peak" which will help for our purpose.

If $x_m \ge x_n$, $\forall n \ge m$, then x_m is called a peak. That is, if for some $m \in \mathbb{N}$, all the terms of the sequence after *m*-terms never exceeds x_m , then it is a peak. Here, we note that, by definition, every term of a decreasing sequence is always a peak and no term of an increasing sequence is a peak. Then, depending on the number of peaks, there may arise two cases: Case I: The sequence has infinitely many peaks and Case II: the sequence has finite number of peaks.

Case I: Let $X = \langle x_n : n \in \mathbb{N} \rangle$ has infinitely many peaks and let the peaks, after listing them by increasing subscripts, be $x_{m_1}, x_{m_2}, x_{m_3}, x_{m_4}, \dots$. Since, each term of this list is a peak, so,

 $x_{m_1} > x_{m_2} > x_{m_3} > x_{m_4} > x_{m_5} > x_{m_6} > x_{m_7} > \dots$

Therefore, the subsequence $\langle x_{m_1}, x_{m_2}, x_{m_3}, x_{m_4}, \dots \rangle = \langle x_{m_n} : n \in \mathbb{N} \rangle$ of peaks obtained in this way is a decreasing subsequence of *X*.

Case II: Let $X = \langle x_n : n \in \mathbb{N} \rangle$ has finite number of peaks including no peak at all.

Let, in increasing subscripts, the peaks are listed as x_{m_1} , x_{m_2} , x_{m_3} , ..., x_{m_k} . Further, let, $s_1 = m_r + 1$ be the first index beyond the last peak. Then, x_{s_1} is not a peak and hence there exists $s_2 > s_1$ such that $x_{s_1} < x_{s_2}$. Since, x_{s_2} is not a peak, so there exists $s_3 > s_2$ such that $x_{s_2} < x_{s_3}$. Continuing in this way, we obtain an increasing subsequence $\langle x_{s_n} : n \in \mathbb{N} \rangle$ of X.

Note: The above theorem can be applied to prove Bolzano-Weirstrass Theorem.

The Bolzano-Weirstrass Theorem: A bounded sequence of real numbers has a convergent subsequence.

First Proof: Using Monotone Subsequence Theorem:

Let $X = \langle x_n : n \in \mathbb{N} \rangle$ be a bounded real sequence. By the Monotone Subsequence Theorem, the sequence X has a monotonic subsequence $X' = \langle x_{n_k} \rangle$. Since X is a bounded sequence, so, every subsequence of it is clearly bounded and hence $X' = \langle x_{n_k} \rangle$ is bounded. Thus $X' = \langle x_{n_k} \rangle$ is a bounded monotonic sequence. Therefore, by the Monotone Convergence Theorem, $\langle x_{n_k} \rangle$ is convergent. Hence, the theorem follows.

Second Proof: Using nested interval Theorem:

Let $X = \langle x_n : n \in \mathbb{N} \rangle$ be a bounded real sequence. Then, there an interval $I_1 = [a,b]$ such that $X = \langle x_n : n \in \mathbb{N} \rangle \subset I = [a,b]$. Take $n_1 = 1$.

Bisect the interval $I_1 = [a,b]$ into two subintervals I_{11} and I_{12} . Also, let us divide the set of indices $\{n \in \mathbb{N} : n > 1\}$ into two parts:

$$A_1 = \{n \in \mathbb{N} : n > n_1, x_n \in I_{11}\}, B_1 = \{n \in \mathbb{N} : n > n_1, x_n \in I_{12}\}$$

Then, at least one of $A_1 \& B_1$ is infinite. W.L.O.G. (without loss of generality), let, B_1 be infinite. Then, label $I_{12} = I_2$ and let n_2 be the smallest natural number in B_1 .

Again, bisect the interval I_2 into two subintervals I_{21} and I_{22} . Also, let us divide the set of natural numbers $\{n \in \mathbb{N} : n > n_2\}$ into two parts:

$$A_{2} = \{n \in \mathbb{N} : n > n_{2}, x_{n} \in I_{21}\}, B_{2} = \{n \in \mathbb{N} : n > n_{2}, x_{n} \in I_{22}\}$$

Then, at least one of $A_2 \& B_2$ is infinite. W.L.O.G. (without loss of generality), let, A_2 be infinite. Then, label $I_{21} = I_3$ and let n_3 be the smallest natural number in A_2 .

Continuing in this process, we obtain a nested sequence $I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots \dots \dots$ of intervals and a subsequence $\langle x_{n_k} : n_k \in \mathbb{N} \rangle$ of X such that $x_{n_k} \in I_k$ for all $k \in \mathbb{N}$. Here, we note that $|I_k| = (b-a)/2^{k-1}$. Then, by nested interval property, there exists a unique common point $x \in I_k$, $\forall k \in \mathbb{N}$.

Now,
$$x_{n_k}$$
, $x \in I_k$, $\forall k \in \mathbb{N} \Longrightarrow |x_{n_k} - x| \le (b-a)/2^{k-1} \to 0$ as $k \to \infty$

So, it follows that $x_{n_k} \to x$ as $k \to \infty$. i.e., the subsequence $\langle x_{n_k} : n_k \in \mathbb{N} \rangle$ is convergent. Hence the theorem follows.

Theorem: If a bounded sequence $X = \langle x_n : n \in \mathbb{N} \rangle$ of real numbers be such that every convergent subsequence of it converges to x, then the sequence X itself converges to x.

Proof: Let M > 0 be a bound for the sequence X such that $|x_n| \le M$, $\forall n \in \mathbb{N}$.

Now, if $X = \langle x_n : n \in \mathbb{N} \rangle$ does not converge to x, then, there exists $\varepsilon > 0$ and subsequence $X' = \langle x_{n_k} \rangle$ of X such that $|x_{n_k} - x| \ge \varepsilon$, $\forall k \in \mathbb{N}$(1).

Since, $X' = \langle x_{n_k} \rangle$ is a subsequence of X, the number M > 0 is also a bound for $X' = \langle x_{n_k} \rangle$. Hence, by Bolzano-Weirstrass Theorem, $X' = \langle x_{n_k} \rangle$ has convergent subsequence X", say. Then, it is also a convergent subsequence of X and so, by our hypothesis, X" converges to x.

Thus its terms ultimately belong to the ε - neighbourhood of x which contradicts (1).

So, the theorem follows.