LECTURE NOTE-3
ON
TOPIC: SEQUENCES AND THEIR CONVERGENCES
SUB-TOPIC: SUBSEQUENCES AND THE BOLZANO WEIRSTRASS THEOREM

WITH SOME APPLICATIONS

FOR

B.Sc. 2" and 4™ SEMESTER (Honours/ Major)

Prepared By: DR. ANANDARAM BURHAGOHAIN

JAGIROAD COLLEGE, JAGIROAD



Introduction

Roughly, a subsequence of a sequence is another sequence obtained by selecting some terms
from the given sequence following some specific rule or selection procedure. There is a definite
purpose in constructing such subsequences from a given sequence. Mainly, subsequences are
often found useful for the purpose of establishing the convergence or divergence of the given
sequence. In this discourse, we will state and prove a very important theorem known as the
Bolzano-Weirstrass Theorem, which is basically an existence theorem and is also very useful to
establish several significant results in analysis.

Subsequences: Definition
Let X = <xn> be a sequence of real numbers and n, <n, <n, <n, <...<n, <....... be a strictly

increasing sequence of natural numbers. Then the sequence X'=(X, ) =(X,, X, Xy ) iS

n?on, T tng

called a subsequence of X.

. 1 .
For example, consider the sequence X =<xn :—:neN> . Then the following are some
n

sequences which are subsequences of the sequence X = <xn = 1> .
n

Theorem 1: If a sequence X = <xn>converges to a real number x, then any subsequence of it

also converges to Xx.

Proof: Let the real sequence X = <xn> converges to the real number x and X’:<x Xy X geenes >

n N, T hng?

be a subsequence of it. We prove that the subsequence X' = <xnl XX > also converges to x.

Let £ > 0be arbitrary. Then,

X, > X ¢>0=3n, eNst|x, —x <& Vn=n,
NOW, X' = (X, X, X, -...) IS @ sUbSEQUENCE =N, <N, <Ny <Ny <o <Ny <

=3n, eNst n 2ng



Then, clearly,

X, —x‘ <g Vn =n,2n, and hence, X, — X.
Application of the above Theorem:

Example 1: If 0<a <1, prove that lim (") =0.

Proof: Let X = <xn =a":ne N> . Then, we have,

O<a<l=0<a™<a", VneN=x_,<X,VneN.

n+1

So, itisclear that X = <xn =a":ne N> is a decreasing sequence of real numbers.
Further, 0<a<l=0<a" <1 VneN=0<x, <1, ¥V neN=(x,) is bounded.
So, by monotone convergence theorem X = <xn =a":ne N> is convergent. Letlim(x,) =X .

Again, we have, x,, =a*" =(a")* =(x,)?, ¥ neN and the sequence X'=(x,,)is clearly a

subsequence of X = <xn =a":ne N> . S0, by the above theorem,

x =lim(x ) = lim(x,,) = lim@*") =lim@". a") = lim@").lim@") = x. x = x*
= x=x°
=x=0or1

Since, the sequence is decreasing and bounded above by 1, so, we have, x=lim (a") =0.
Example 1: If ¢ >1, prove that lim (c'") =1.

Proof: Let X = <xn =c’":n eN> . Then, we have,

1 1
c>1=c">c"™, VneN=X,, <X, VNneN.

1
So, it is clear that X :<xn =c":n eN> is a decreasing sequence of real numbers. Further,

1
c>1=c¢">1 VneN=x,>1 VneN=(x,)isbounded below.



1
So, by monotone convergence theorem X = <xn =Cc":ne N> is convergent. Letlim(x,) =X .

1
1 1\, 1
Again, we have, X,, =C?" =[C”J =(X,)?, ¥V neN and the sequence X'=(x,,)is clearly a
1

subsequence of X = <xn =c"ine N> . S0, by the above theorem,

1

1 1
x = lim(x,) = lim(x,, ) = lim(x,)2 = [lim(x,)]> = x2
= X=X’
=x=0orl

Since, the sequence is decreasing and bounded below by 1, so, we have, x = lim (c''") =1.

Negation of the Definition of Convergence:

The following theorem gives the negation of the definition of convergence and it leads to a
convenient method to establish the divergence of a sequence.

Theorem: For a sequence X = <xn > of real numbers, the following statements are equivalent.

i) The sequence X =(x,) does not convergetox e R .

i) There existsan & >0s.t.forany ke N, 3In, e N s.t. n, >k and

X, —X>e
iii) There exists an& >0and a subsequence X' =<xnk>of the sequence X :<xn> such

that

Xo, —X‘Zg forallk e N.

Divergence criteria

If a sequence X = <xn> of real numbers has either of the following properties, then X is divergent.

)] X has two convergent subsequences whose limits are not equal.
i) Xis unbounded.

Applications:

In the following examples, we will see nice applications of the above divergence criteria.



Examples:

Proof: Here, the subsequences X'=(-1, -1,—-1-1,.....) and X"=(1 1 1,.....) of

the sequence X = <(—1)”> = <—1, 1-1,... > are convergent and converge to the limits

-1 and 1 respectively. Thus two convergent subsequences of the given sequence
converge to two different limits. So, by divergence criteria, the sequence X must be
divergent.

1
B) The sequence X = <1’§’ 3,
Proof: Here the sequence X = <1,

X, =n for nodd and x, =

For odd n, the values of the terms will increase abundantly. So, the sequence is
unbounded and hence by divergence criteria, it is divergent.

C) The sequence X =(sin(n): neN) is divergent. (H.W.)

The existence of monotone sequences:

Though every real sequence is not a monotone sequence, we can show that every such sequence
has a monotone subsequence. The following theorem establishes this fact clearly.

The Monotone Subsequence Theorem: Every sequence of real numbers has a monotone
subsequence.

Proof: Let X = <xn ‘ne N) be a real sequence. We now construct a monotone subsequence of
this sequence.

Let us first define a term “peak” which will help for our purpose.

Ifx, =X,, Yn=m, thenx, is called a peak. That is, if for somem e N, all the terms of the
sequence after m-terms never exceeds x,,, then it is a peak. Here, we note that, by definition,

every term of a decreasing sequence is always a peak and no term of an increasing sequence is a
peak. Then, depending on the number of peaks, there may arise two cases: Case I: The sequence
has infinitely many peaks and Case II: the sequence has finite number of peaks.

Case I: Let X :<xn 'n eN> has infinitely many peaks and let the peaks, after listing them by

increasing subscripts, be X, , Xy, Xp o X eeveeeeee . Since, each term of this list is a peak, so,



X > X > X >X > X > X > X > e s .

Therefore, the subsequence <x Xy Xy X e > :<xmn 'n eN> of peaks obtained in this

m Mmyt Amgr Mmy o

way is a decreasing subsequence of X.

Case ll: Let X = <xn ‘ne N> has finite number of peaks including no peak at all.

Let, in increasing subscripts, the peaks are listed as X, , Xy , Xg s coeeeee , X

3 My

. Further, let,
s, =m, +1be the first index beyond the last peak. Then, X, is not a peak and hence there exists

s, >s,such that x, <x, . Since, X, is not a peak, so there exists s, > s, such thatx, <X, .
2 1 Sy S, Sy 3 2 S, S3

S,

Continuing in this way, we obtain an increasing subsequence <x ine N> of X.

Note: The above theorem can be applied to prove Bolzano-Weirstrass Theorem.

The Bolzano-Weirstrass Theorem: A bounded sequence of real numbers has a convergent
subsequence.

First Proof: Using Monotone Subseqguence Theorem:

Let X = <xn ‘ne N> be a bounded real sequence. By the Monotone Subsequence Theorem, the
sequence X has a monotonic subsequence X' = <xnk> . Since X is a bounded sequence, so, every
subsequence of it is clearly bounded and hence X’:<xnk> IS bounded. Thus X’:<xnk> IS a

bounded monotonic sequence. Therefore, by the Monotone Convergence Theorem, <xnk> is

convergent. Hence, the theorem follows.

Second Proof: Using nested interval Theorem:

Let X = <xn 'n eN> be a bounded real sequence. Then, there an interval I, =[a,b]such that

X =(x,:neN)cl=[ab]. Taken, =1.

Bisect the interval 1, =[a,b]into two subintervals I ,and I, . Also, let us divide the set of
indices{n € N : n > 1}into two parts:

A ={neN:n>n, x, el,}, B={neN:n>n, x, €l,}

Then, at least one of A &B, is infinite. W.L.O.G. (without loss of generality), let, B, be
infinite. Then, label I , =1, and letn, be the smallest natural number in B;.



Again, bisect the interval 1, into two subintervals I,,and I, . Also, let us divide the set of natural
numbers{n € N : n > n, }into two parts:

A, ={neN:n>n,, x,ely} B,={neN:n>n,, x, €l,}

Then, at least one of A, &B, is infinite. W.L.O.G. (without loss of generality), let, A, be
infinite. Then, label I,; = 1, and letn, be the smallest natural number in A, .

Continuing in this process, we obtain a nested sequence I, o1, o1, D............ of intervals and a
subsequence <xnk n, eN> of X such that x, €I, for all ke N . Here, we note that

|Ik|=(b—a)/2"‘l. Then, by nested interval property, there exists a unique common point
xel,, VkeN.

Now, X, , Xel,, Vke N=

Xp, —x‘ <(b-a)/2"" >0ask >
So, it follows thatx, — X as k -0 i.e., the subsequence <xnk n, eN> is convergent.
Hence the theorem follows.

Theorem: If a bounded sequence X :<xn:neN> of real numbers be such that every
convergent subsequence of it converges to x, then the sequence X itself converges to x.

Proof: Let M > Obe a bound for the sequence X such that|x,| <M, VneN..

Now, if X =<xn 'n eN) does not converge to x, then, there exists £ >0 and subsequence

X' = <xnk >of X such that

T =h \ I 1.

Since, X’:<xnk>is a subsequence of X, the number M >0is also a bound for X':<xnk>.

Hence, by Bolzano-Weirstrass Theorem, X' = <xnk > has convergent subsequence X", say. Then,

it is also a convergent subsequence of X and so, by our hypothesis, X" converges to x.
Thus its terms ultimately belong to the ¢ - neighbourhood of x which contradicts (1).

So, the theorem follows.



