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Introduction 

Roughly, a subsequence of a sequence is another sequence obtained by selecting some terms 

from the given sequence following some specific rule or selection procedure. There is a definite 

purpose in constructing such subsequences from a given sequence. Mainly, subsequences are 

often found useful for the purpose of establishing the convergence or divergence of the given 

sequence. In this discourse, we will state and prove a very important theorem known as the 

Bolzano-Weirstrass Theorem, which is basically an existence theorem and is also very useful to 

establish several significant results in analysis. 

Subsequences: Definition  

Let nxX   be a sequence of real numbers and ...........4321  knnnnn  be a strictly 

increasing sequence of natural numbers. Then the sequence ,.....,,
321 nnnn xxxxX

k
  is 

called a subsequence of X. 
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Theorem 1: If a sequence nxX  converges to a real number x, then any subsequence of it 

also converges to x.  

Proof: Let the real sequence nxX   converges to the real number x and ,.....,,
321 nnn xxxX 

be a subsequence of it. We prove that the subsequence ,.....,,
321 nnn xxxX   also converges to x. 

Let 0 be arbitrary. Then, 

                                             00 ,..0, nnxxtsnxx nn    

Now, ,.....,,
321 nnn xxxX   is a subsequence ...........4321  knnnnn  

                                                                           0.. nntsn pp    



Then, clearly, 0, nnnxx pknk
    and hence, xx

kn  . 

Application of the above Theorem: 

Example 1: If 10  a , prove that 0)(lim na .  

Proof: Let  naxX n

n : . Then, we have,  

                                        

 nxxnaaa nn

nn ,,010 1

1 . 

So, it is clear that  naxX n

n :   is a decreasing sequence of real numbers. 

Further, boundedisxnxnaa nn

n  ,10,1010 . 

So, by monotone convergence theorem  naxX n

n : is convergent. Let xxn )lim(  . 

Again, we have,  nxaax n

nn

n ,)()( 222

2  and the sequence nxX 2 is clearly a 

subsequence of  naxX n

n :  .  So, by the above theorem, 
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



  . 

Since, the sequence is decreasing and bounded above by 1, so, we have, 0)(lim  nax . 

Example 1: If 1c , prove that 1)(lim /1 nc .  

Proof: Let  ncxX n

n :/1
. Then, we have,  

                                        
 nxxnccc nn

nn ,,1 1
1

11

. 

So, it is clear that  ncxX n
n :

1

  is a decreasing sequence of real numbers. Further, 

belowboundedisxnxncc nn
n  ,1,11

1

. 



So, by monotone convergence theorem  ncxX n
n :

1

is convergent. Let xxn )lim(  . 

Again, we have, 








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


 nxccx n

nn
n ,)( 2
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2  and the sequence nxX 2 is clearly a 

subsequence of  ncxX n
n :

1

 .  So, by the above theorem, 
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Since, the sequence is decreasing and bounded below by 1, so, we have, 1)(lim /1  ncx . 

Negation of the Definition of Convergence:  

The following theorem gives the negation of the definition of convergence and it leads to a 

convenient method to establish the divergence of a sequence. 

Theorem: For a sequence nxX  of real numbers, the following statements are equivalent. 

i) The sequence nxX   does not converge to Rx  .  

ii) There exists an 0 s. t. for any k ,   kn  s. t. knk   and  xx
kn  

iii) There exists an 0 and a subsequence 
knxX  of the sequence nxX   such 

that  xx
kn  for all k .  

Divergence criteria  

If a sequence nxX  of real numbers has either of the following properties, then X is divergent. 

i) X has two convergent subsequences whose limits are not equal. 

ii) X is unbounded. 

Applications: 

In the following examples, we will see nice applications of the above divergence criteria. 

 



Examples: 

A)   The sequence ...,.........1,1,1,1,1)1(  nX  is divergent. 

Proof: Here, the subsequences .......,1,1,1,1 X  and .......,1,1,1X of 

the sequence ......,1,1,1)1(  nX  are convergent and converge to the limits 

-1 and 1 respectively. Thus two convergent subsequences of the given sequence 

converge to two different limits. So, by divergence criteria, the sequence X must be 

divergent. 

B) The sequence ......,
6

1
,5,

4

1
,3,

2

1
,1X  is divergent. 

Proof:  Here the sequence ......,
6

1
,5,

4

1
,3,

2

1
,1X  is such that  

                           evennfor
n

xandoddnfornx nn

1
  

For odd n, the values of the terms will increase abundantly. So, the sequence is 

unbounded and hence by divergence criteria, it is divergent. 

C) The sequence  nnX :)sin(   is divergent. (H.W.) 

The existence of monotone sequences: 

Though every real sequence is not a monotone sequence, we can show that every such sequence 

has a monotone subsequence. The following theorem establishes this fact clearly. 

The Monotone Subsequence Theorem: Every sequence of real numbers has a monotone 

subsequence. 

Proof: Let  nxX n :  be a real sequence. We now construct a monotone subsequence of 

this sequence. 

Let us first define a term “peak” which will help for our purpose. 

If mnxx nm  , , then mx  is called a peak. That is, if for some m , all the terms of the 

sequence after m-terms never exceeds mx , then it is a peak. Here, we note that, by definition, 

every term of a decreasing sequence is always a peak and no term of an increasing sequence is a 

peak. Then, depending on the number of peaks, there may arise two cases: Case I: The sequence 

has infinitely many peaks and Case II: the sequence has finite number of peaks. 

Case I: Let  nxX n :  has infinitely many peaks and let the peaks, after listing them by 

increasing subscripts, be ,.........,,,
4321 mmmm xxxx . Since, each term of this list is a peak, so,  



                            ..........................
7654321
 mmmmmmm xxxxxxx .  

Therefore, the subsequence  nxxxxx
nmmmmm :,.........,,,

4321
of peaks obtained in this 

way is a decreasing subsequence of X.  

Case II: Let  nxX n :  has finite number of peaks including no peak at all.  

Let, in increasing subscripts, the peaks are listed as
kmmmm xxxx ........,,,,

321
. Further, let, 

11  rms be the first index beyond the last peak. Then, 
1s

x is not a peak and hence there exists 

12 ss  such that
21 ss xx  . Since, 

2sx is not a peak, so there exists 23 ss  such that
32 ss xx  . 

Continuing in this way, we obtain an increasing subsequence nx
ns : of X. 

Note: The above theorem can be applied to prove Bolzano-Weirstrass Theorem. 

The Bolzano-Weirstrass Theorem: A bounded sequence of real numbers has a convergent 

subsequence. 

First Proof: Using Monotone Subsequence Theorem: 

Let  nxX n :   be a bounded real sequence. By the Monotone Subsequence Theorem, the 

sequence X has a monotonic subsequence
knxX   . Since X is a bounded sequence, so, every 

subsequence of it is clearly bounded and hence 
knxX  is bounded. Thus 

knxX  is a 

bounded monotonic sequence. Therefore, by the Monotone Convergence Theorem, 
knx is 

convergent. Hence, the theorem follows. 

Second Proof: Using nested interval Theorem: 

Let  nxX n :   be a bounded real sequence. Then, there an interval ],[1 baI  such that

],[: baInxX n   .  Take 11 n .  

Bisect the interval ],[1 baI  into two subintervals 11I and 12I  . Also, let us divide the set of 

indices }1:{  nn into two parts: 

                                 },:{},,:{ 12111111 IxnnnBIxnnnA nn   

Then, at least one of 11 &BA is infinite. W.L.O.G. (without loss of generality), let, 1B  be 

infinite. Then, label 212 II   and let 2n be the smallest natural number in B1.  



Again, bisect the interval 
2I into two subintervals 21I and

22I . Also, let us divide the set of natural 

numbers }:{ 2nnn  into two parts: 

                        },:{},,:{ 22222122 IxnnnBIxnnnA nn   

Then, at least one of 22 & BA is infinite. W.L.O.G. (without loss of generality), let, 2A  be 

infinite. Then, label 321 II   and let 3n be the smallest natural number in
2A .  

Continuing in this process, we obtain a nested sequence ............321  III of intervals and a 

subsequence kn nx
k

:  of X such that kn Ix
k
 for all k . Here, we note that

12/)(  k

k abI . Then, by nested interval property, there exists a unique common point

 kIx k , .  

 Now,   kasabxxkIxx k

nkn kk
02/)(,, 1  

       So, it follows that  kasxx
kn . i.e., the subsequence kn nx

k
: is convergent. 

Hence the theorem follows. 

Theorem: If a bounded sequence  nxX n : of real numbers be such that every 

convergent subsequence of it converges to x, then the sequence X itself converges to x.  

Proof: Let 0M be a bound for the sequence X such that  nMxn , .  

Now, if  nxX n : does not converge to x, then, there exists 0   and subsequence 

knxX  of X such that )1.......(....................,  kxx
kn  .  

Since, 
knxX  is a subsequence of X, the number 0M is also a bound for

knxX  . 

Hence, by Bolzano-Weirstrass Theorem, 
knxX  has convergent subsequence X  , say. Then, 

it is also a convergent subsequence of X and so, by our hypothesis, X  converges to x.  

Thus its terms ultimately belong to the  - neighbourhood of x which contradicts (1). 

So, the theorem follows. 

 

 

 


