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TOPIC: Relations, Equivalence relations 

PREREQUISITES: In subsections 1.1 and 1.2, we recall some points which are very much 

needed for our future discussions.  

1.1: Ordered sets, Ordered pairs, ordered triples and n-tuples 

An ordered set is nothing but a particular set whose elements maintain some order. This is 

distinguished from other ordinary sets only in the basis of order of the elements. If the order of 

the elements is changed, we get a different ordered set. To distinguish ordered sets from 

unordered ordinary sets, we normally use the bracket ( ) instead of {} to represent ordered sets. 

For example, {1, 2, 3, 4} is an ordinary set while (1, 2, 3, 4) is an ordered set. 

An ordered set formed by two elements is called an ordered pair. For example, (2, 5) is an 

ordered pair. Similarly, an ordered set consisting of three elements is an ordered triple and in 

general, an ordered set of n elements is an n-tuple.  

1.2: Cartesian product of two sets  

If A and B are two non-empty sets, then their Cartesian product is denoted by   and is 

defined by  

                                                      bandaba :,   

1.3: RELATIONS 

If A and B are two non-empty sets, then any subset of     is called a relation from A to B. 

That is, if      , then R is a relation from A to B.  

Relations are generally denoted by R, R1, R2 etc. If R is a relation and   Rba , , then we denote 

this fact by the notation aRbalso and we call it as “a is R-related to b”.  Thus aRband   Rba ,

imply the same. 

1.3.01: Domain and Range of a relation: The domain and range of a relation R are respectively 

denoted by D and E and are defined as follows: 



                      asomeforaRbbEbsomeforaRbaD :,:  

Clearly, AD  and BE  . 

1.3.02: Total number of distinct relations from a set to another set 

Suppose A and B be two non-empty sets. Then the total number of distinct elements in A×B is  

 n (A).n (B) and so we have 2
n(A).n(B)

 numbers of  distinct subsets of A×B. Since, by definition, 

every subset of A×B is a relation from A to B, so it clearly follows that there are 2
n(A).n(B)

  

distinct relations from A to B.  From this we have that the total number of distinct relations from 

a finite non-empty set to another finite non-empty set is always a power of two and hence an 

even number. 

Ex. 1.3.02.01:  If A= {a, b, c} and B= {1, 2, 3, 4 }, then the following are some examples of 

relations from A to B: 

(i) R1 ={(a,2), (c,1), (b,4),(b,1), (c,2),(b,2)}    

(ii) R2 ={(a,4), (c,2), (b,1),(b,4), (c,1),(b,2),(a,2), (a,1), (c,3)}    

(iii) R1 ={(a,1), (a,2), (a,3), (a,4), (b,1), (b,2),(b,3), (c,1),(c,2)}    

1.4: The void and the universal relations from a set A to a set B 

A relation R from a set A to a set B is called  

(i) The void relation from A to B if R  

(ii) The universal relation from A to B if R  

1.5: Relations in a set  

If R , then R is a relation from A to A. In this case we generally say that R is a relation 

in the set A. This is because of the fact that the relation R relates among the elements within the 

set A.   

Ex.1.5.01: Let L be the set of all lines on the xy-plane. Then the following are some good 

examples of relations in the set L: 

(i)   2121211 ..:, llinethetolarperpendicuisllinetheeillLLllR   

(ii)   21212 :, llinethetoparallelisllinetheLLllR   

(iii)   21213 :, llinethecutsllinetheLLllR   

Ex.1.5.02: Let T be the set of all triangles on the xy-plane. Then the following are some 

examples of relations in T: 



(i)   2121214 ..:,  trianglethetocongruentistriangletheeiTTR  

(ii)   2121215 ..:,  trianglethetosimilaristriangletheeiTTR  

(iii)   2121216 ..)()(:,  ofareathetoequalisofareatheeiareaareaTTR

  

Ex.1.5.04: Let   be the set of all integers. Then the following are some relations in : 

(i)   ndividesmeinmnmR ..|:,7   

(ii)   )(|.,.)1()(mod:,8 nmpeipwherepnmnmR   

(iii)   nmnmR  :,9  

(iv)   12:, 2

10  nmnmR  

Ex.1.5.05: For the set   of all natural numbers, define 
1211, RR in  as follows: 

(i)     bcaddcbaR  :,,,11
 

(ii)     cdabdcbaR  :,,,12
 

Then 
1211, RR are relations in  . 

Ex.1.5.06: For any non-empty set X, the relation R is defined in  as  

                          xxxR :, is called the identity relation in X. 

1.6: Different types of relations in a set: 

A relation R in a non-empty set A (i.e., R ) is called 

(i) Reflexive iff  RaaAa   

(ii) Symmetric iff bRaaRb  

(iii) Anti-symmetric iff  babRaaRb ,  

(iv) Transitive iff aRcbRcaRb ,  

1.7: Two important relations in a set 

We have two more special types of relations in a non-empty set which has some algebraic as 

well as analytical importance. These are used, in a certain sense, as tools to characterize and 

analyze internal structure of sets. 

A relation R in a set A is said to be  

(i) An equivalence relation if it is reflexive, symmetric and transitive 

(ii) A partial order relation if it is reflexive, anti-symmetric and transitive 



We mainly study equivalence relations in detail in this discourse. 

1.8: Some examples and counterexamples of equivalence relations 

Ex.1.8.01: Consider the set L of all the lines on the xy-plane. Then the relation R in L defined by  

  2121 :, llinethetoparallelisllinetheLLllR   is clearly an equivalence relation while 

  212121 .,.:, llinethetolarperpendicuisllinetheeillLLllR   is not an equivalence 

relation in L. For, in case of Rwe can easily see that the transitivity does not hold. 

Ex.1.8.02: Consider the set T of all the triangles on the xy-plane. In this case the relations in T 

defined by   2121214 ..:,  trianglethetocongruentistriangletheeiTTR  

and   2121215 ..:,  trianglethetosimilaristriangletheeiTTR are 

equivalence relations. 

Ex.1.8.03: In the set Z of all integers, the relation   ndividesmeinmnmR ..|:,   is 

not an equivalence relation. For, this relation is not symmetric. For example, 3|6 and hence by 

definition, 3R6; but 3|6   and hence 36R . So, R is not symmetric. 

Ex.1.8.04: In Z, the relation R defined by 

   )(|.,.)1()(mod:, nmpeipwherepnmnmR   is an equivalence relation. 

For, 

(i) Reflexivity:  

                   We have, 
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                     Therefore, R is reflexive. 

(ii) Symmetry:  We have, 
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                     Therefore, R is symmetric. 

 

 

 



(iii) Transitivity: We have, 
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Therefore, R is transitive and hence we can ultimately conclude that R is an equivalence 

relation in Z. 

Ex.1.8.05: Consider the relation     bcaddcbaR  :,,,  in N. Here, 

(i) Reflexivity: We have,  
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   Therefore R is reflexive. 

(ii) Symmetry: We have, 
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Therefore R is symmetric. 

(iii) Transitivity: We have, 
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So, R is transitive and hence it follows that R is an equivalence relation. 

1.9: Equivalence classes: 

      Suppose R is an equivalence relation in a non-empty set A. Then it gives rise to some subsets 

of A which are called equivalence sets or equivalence classes. The formal definition of the 

equivalence classes is as follows: 

The equivalence class of Aa  is denoted by aA or by ][a  or by a  and is defined by 



 

                                             aRxeiRaxAxa .,.),(:][   

That is, ][a  is the subset of A that contains all those elements in A which are R-related to a. 

Ex.1.9.01: Consider the set Z of all integers and the relation R in Z defined as follows: 

   )5(mod,:),( nmandnmnmR  . Further consider the elements 4,3,2,1,0 . 

 Here, we first find the elements in ]0[ . 

 We have,  

                      

     

 

 

 ,.....25,20,15,10,5,0
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 .....,16,11,6,1,4,9,14.....,

,15:
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 .....,17,12,7,2,3,8,13.....,

,25:

,52:

)2(|5:5(mod2:2:]2[
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Similarly,    ,.........19,14,9,4,1,6,11....,]4[,.....,18,13,8,3,2,7,12.....,]3[   

Further we see that                                                                                    

.......]19[]11[]14[]6[]9[]1[]4[

.......]18[]12[]13[]7[]8[]2[]3[

.......]17[]13[]12[]8[]7[]3[]2[

.......]16[]14[]11[]9[]6[]4[]1[

.......]25[]20[]15[]10[]5[]0[











 

That is, we have only five distinct equivalence classes in A determined by the relation R. 

Note: Equivalence classes in a set have some nice properties. These properties give rise to a 

partition [Definition given below] of the set A. 



 

1.10: Properties of equivalence classes: 

Theorem 1.10.01: If R is an equivalence relation in a set A and ba, , then 

(i) ][aa  

(ii) ][][][ baab   

(iii) bRaba  ][][  

(iv) Either ][][ ba   or  ][][ ba   

  Proof:  

(i) We have,  

               R is an equivalence relation in A and a  

                   
][][
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classeseequivalencofdefinitionbyaa

reflexiveisRaRa



 
 

(ii) We have, 

              
][][ RofsymmetrybybRaandaRbab 
 

Now we show that ][][ ba  . For this we show that ][][&][][ abba  . 

We get,  
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Therefore, it follows that ][][ ba   

Again, 
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Therefore, it follows that ][][ ab   

Finally ][][][][&][][ baabba   

(iii) Let us first assume that ][][ ba   

Then from (i), we have, ][aa  

Now,                     

                              
][

]][][[][][

definitionbybRa
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Conversely, let bRa . Then, by definition, ][ba  and hence by (ii), ][][ ba  . 

(iv) For two equivalence classes ][a  and ][b , we have two cases: 

   Case 1:  ][][ ba   or Case 2: ][][ ba   

  For case 1, we are nothing to do. 

  If ][][ ba  , then ][][ bax  and hence  

                                       

][][

][][][

][][],[][

][],[][][
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Thus ][][][][ baba    

Hence either ][][][][ baorba    

1.11: Partitions:  

The term partition comes from the word “part”. When a set is divided into some parts under 

certain conditions, then we get a partition of the set. More precisely, by a partition of a non-

empty set A we mean a division of the set A into mutually disjoint subsets of it.   

Formally, a collection  nAAAA ,.....,,, 321 of subsets of a non-empty set A is called a partition 

if  

(i)  niAi ,...,3,2,1,    

(ii) jiAA ji  ,  

(iii) AA
n

i

i 



1

 

For example  ]4[],3[],2[],1[],0[  is a partition of Z, 

Theorem 1.11.01: [Fundamental theorem of equivalence relations] 

 Every equivalence relation in a non-empty set A induces/ determines a partition of A and 

conversely, a partition of A defines in an equivalence relation in A.  

Proof: Part I: Let us first assume that R is an equivalence relation in a non-empty set A. We show 

that R determines a partition of A. 

Let  Rrelationeequivalencthebygivenofclasseequivalencanisaaa  ][,:][  be 

the collection of all the distinct equivalence classes of A determined by R. Then, by properties of 

equivalence classes, we have, 



(i) ][aaa   

Now,  ][,][][ aaaa   

(ii) For two equivalence classes ][a and ][b , we have, either ][][ ba  or ][][ ba   

So, distinct members of P are pairwise disjoint. 

(iii) We have that 
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Conversely, 
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Now, 
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         (i), (ii) & (iii) imply that P is partition of A. We have seen that this partition is determined 

by the equivalence relation R. So, we can conclude that R induces the partition P. 

Part II: Let  n ,......,,, 321 be a partition of the non-empty set A so that 

(i)  niAi ,...,3,2,1,    

(ii) jiAA ji  ,  

(iii) AA
n

i

i 



1

 

 

Now, let us define a relation R in A by 

                             ii someforbabRa ,  

We now show that R is an equivalence relation in A. 

(1) Reflexivity: We have, 
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