
PERMUTATIONS 

In crude sense, permutations are arrangements of objects in various orders and forms. In terms of 

sets and functions, permutations are bijective mappings on non-empty sets. The main interest of 

the mathematical society is to deal with the permutations on finite sets as those are more 

effectively employed to deal with the problems related to finite dimensional objects and their 

transformations as well as their properties. Studies of symmetries of geometrical objects may be 

particularly cited in this case. Here we first give the formal definition of a permutation on finite 

sets and then we will discuss on various important and relevant topics related to it. Finally we 

establish that the set of all the permutations on a finite set forms a group under the operation of 

composition of mappings. 

Groups containing permutations are known as permutation groups. These groups are very useful 

in the study of finite groups. This is because of the fact that every finite group is isomorphic 

(structurally same) to a permutation group. So, the study of permutations and permutation groups 

invites more attention of the mathematicians dealing with finite group theory.  

Definition 1. If S is a non-empty finite set having n elements, then a bijective or a one-one and 

onto mapping       is called a permutation of degree n on S. 

Remarks: 

1. The degree of permutation is nothing but the number of elements in the underlined finite 

set, known as the set of symbols or symbol set, on which the permutations are defined. 

2. We have a total number of    functions on a set S having n distinct elements. Out of 

these   functions, only the bijective mappings on S are the permutations on S. 

Notation for a permutation 

Let    *                  + is a finite set having n-distinct elements and       is a 

bijective mapping on S such that  (  )                 where   
     *            +. 

Then, by definition,       is a permutation of degree n on S. This permutation is generally 

denoted by the symbol  

                                         .
      

      

   

   
/  

In the above convention of two row notation for a permutation, we observe that each element in 

the second row is the f-image of the element in the first row just lying directly above it.  

For example, by the permutation  .
   
   

/, we generally understand the one-one and onto 

function   *     +  *     + such that  ( )     ( )     ( )      



Remarks: A permutation represented in a two-row symbolism may be written in many different 

ways. For, if we interchange the positions of two columns in a particular permutation without 

changing their entries, those interchanges don’t affect in the rule of the bijective mapping giving 

the permutation. Therefore, the permutation and the permutation obtained after interchanges of 

columns will represent the same permutation. Thus, though the appearances of the permutations 

given below seem different, they represent the same permutation as they are representing the 

same functional rule:             only. 
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Equality of permutations 

Definition 2. Two permutations   and   of degree n on the same symbol set S are said to be 

equal if we have that  ( )   ( )       That is, two permutations   and   on the same 

symbol set S are equal if they are equal as functions on S. In this case we usually write       

For example,  .
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/ are two equal permutations of 

degree 5.  Further the six permutations mentioned in the above remark are all equal. 

Note: The only difference, if there exists, there may arise between two equal permutations is the 

difference in the column positions. 

Identity permutation 

Definition 3. If a permutation I of degree n on S is such that I replaces each element of S by the 

element itself, then I is called the identity permutation of degree n. That is, the identity 

permutation of degree n on S is the identity mapping on S.  

In other words, if both the rows of a permutation are identical, then the permutation is an identity 

permutation. 

For example,   .
      

      

   

   
/ or (
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/ are 

identity permutations of degree n. 

Total number of distinct permutations of degree n 

Let   *                  + and   .
      

      

   

   
/ be a permutation of degree n on 

S. It is easy to see that by fixing the elements in the first row of f and arranging the elements in 

the second row by changing their orders, we get different permutations. The n distinct elements 

in the second row can be arranged in n! distinct ways and hence we get n! distinct permutations 

on the set S. Thus from a set having 2 distinct elements we will get 2!=2 and from a set having 3 

distinct elements we will get 3!=6 distinct permutations etc. 



The symmetric set of permutations 

The set of all the n! distinct permutations of degree n on a finite set S having n distinct elements 

is denoted by              and is called the symmetric set of permutations of degree n. Thus     

denotes the symmetric set of all the permutations of degree 3. Clearly    contains 3!= 6 distinct 

elements. Similarly    is the symmetric set of permutations of degree 4 having 4!= 24 elements. 

Product of permutations 

We have seen that every permutation is a bijective mapping. We also know that the composition 

of two bijective mappings on S is again a bijective mapping. So, it immediately follows that the 

composition of two permutations of degree n on S is again a permutation of degree n on S. 

Therefore, with the help of composition of mappings we can naturally define the product of two 

permutations   and   of the same degree n, denoted as     by         

In other words, the product    of two permutations   and   of the same degree n is obtained by 

first carrying out the operation defined by f and then by  .  

For example, if   .
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/, then by definition 
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Here we notice that     .  

Remarks:  

1. If we have to find the product     then it is customary to express the permutation   in 

such a way that its first row coincides with the second row of    so that one can 

immediately and easily find the images under  . After expressing the second 

permutation in this way, without following other mechanical ways one can easily write 

the product    by taking the first row of   as the first row of    and the second row of 

  as the second row of   . 
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2. Product or multiplication of permutations is not necessarily commutative. That is, it is not 

necessary that      . 



Inverse of a permutation 

If    is a permutation of degree n on a set of symbols S, then   is a bijective mapping on S. We 

know that a bijective mapping always possesses a unique inverse mapping and that the inverse is 

also a bijective mapping. So, if     is the inverse of the permutation   of degree n on S,  then 

    is also a bijective mapping on S and hence is a permutation of degree n on S. This inverse 

mapping     of   is defined as the inverse of the permutation .  

Thus if   .
   
   

     
  
  

/, then its inverse is     .
   
   

     
  
  

/.  

Note: One can very easily find the inverse of a permutation just by interchanging its rows. That 

is, in general, the inverse of the permutation .
      

      

   

   
/  is(
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Thus the inverse of   .
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The Symmetric groups of permutations 

Theorem1: The symmetric set     of all permutations on n symbols is a finite group of order n! 

with respect to composition of mappings as the binary operation. For    , this group is 

Abelian and for    , the group is always non-Abelian. 

Proof: Let   *                 + be a finite set having n-distinct elements and  

                                           * |                          +.  

Here we notice that to have bijective mappings from S onto itself, we can associate the elements 

              in                 ways respectively and hence by fundamental principle 

of counting, we will have  (    )(    )          distinct bijective mappings from S 

onto itself, i.e.,    distinct permutations of degree n on S. Thus, the symmetric set    contains 

n! distinct elements. 

 Now we show that    is a group under the composition of mappings as the binary operation. 

Closure property:  

We have, 

                                                                    

                                                                     

                                                



Therefore    is closed under the operation of composition of mappings. 

Associativity: 

We know that composition of mappings is always an associative operation. Therefore, 

                                 (   )     (   )               

Now (   )     (   )   (  )     (  ) ,                             -   

                                               (  )  (  )              

Associativity can also be established alternatively as follows: 
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Therefore the composition is associative. 

Existence of Identity: 

Let   .
      

      

   

   
/     be arbitrary.   

Now we have the identity permutation   .
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Thus                 

 Hence   .
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)     is the identity element. 

Existence of Inverse: 

Let   .
      

      

   

   
/     be arbitrary.  Then,     (
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Further      (
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Hence (
      

      

   

   
)     is the inverse of .
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Thus    is a group of order n! under the composition of mappings as the binary operation. 

Finally, for      , this symmetric group is of orders 1 and 2 respectively. Since groups of 

order 1 and 2 are always Abelian, so    and    are Abelian. 

We now prove that    is non-Abelian for       

Let   .
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Then,    .
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So,    is non-Abelian for      

Note: The structure of a symmetric set    and number of elements in it depend only on the 

number of elements in the symbol set S. So, it is immaterial whatever symbol we use to form 

permutations. The only important thing is the number of symbols in the symbol set. Thus we 

may use              or                   or any n-distinct symbols to form   . 

Cyclic Permutations 

Definition 4. Let   be a permutation of degree   on a set S having n distinct symbols. If it is 

possible to arrange  (  ) elements of the set S in a row in such a way that the  -image of each 

element in the row, except the last element, is the element which follows it, the  -image of the 

last element in the row is the first element and the remaining (   )  elements of the set which 

are not appearing in the row are left unchanged by    then   is called a cyclic permutation or a 

cycle of length m or simply an m-cycle.  



For example, consider the permutation  .
   
   

      
   
   

/  of degree 6. This 

permutation can be represented by the cycle(            ). For, from the 4-cycle(            ), by 

the definition of a cyclic permutation, the permutation f can easily be written by the rule that the 

 -image of 1 is 3, the  -image of 3 is 2, the  -image of 2 is 4, the  -image of 4 is 1  and the 

remaining 2 symbols 5 and 6 are left unchanged by f.  

Similarly, the permutation .
   
   

      
   
   

/ can be represented by the cycle(            )   

But the permutation .
   
   

      
   
   

/ cannot be represented by a cycle or not cyclic. 

Disjoint cycles 

Two cyclic permutations or cycles are said to be disjoint if they have no symbol in common.  

For example, (1  2  4  3) and (5  7  6) are disjoint cycles while (1  3  4  5) and (4  7  6  2) are not 

disjoint cycles. 

An important note: If two cycles of same length containing the same symbols are such that they 

look different as rows, but they maintain the same cyclic order, then they represent the same 

cycle. For example (            ) (             )    (              ) represent the same cycle. This 

is evident if we represent them as permutations of two-rowed symbols. 

Multiplication or product of cycles 

As a cycle represents a permutation, the product of two cycles is nothing but the product of the 

permutations represented by the cycles. 

For example, the product of the cycles (           )     (       )  is 

                      (           ) (        )  .
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Remarks: One can easily find the product of two cycles without expressing the cycles into two-

rowed form. For this purpose we first consider the first element of the first cycle. By definition 

of cycles its image is the second element in the first cycle. Now we find the image of this second 

element in the second cycle. The image found in this way is the image of the first element of the 



first cycle. Then we find the image of the image of first element in the same process and 

proceeding in the same way we get the product of the cycles easily.  

For example, consider the product(           )(               ). Here the image of 6 in first cycle is 

2 and that of 2 in the second cycle is 4. Hence the image of 6 in the product is 4. Now we find 

the image of 4 in the product. Here, the image of 4 in the first cycle is 3 and that of 3 in the 

second cycle is 5. Therefore, the image of 4 in the product is 5. Then we see that the symbol 5 is 

absent in the first cycle. So, its image in the first cycle is 5 by the convention of a cycle. Again 

the image of 5 in the second cycle is 2 and hence the image of 5 in the product is 2. Proceeding 

in this way we will easily find that the image of 2 is1, the image of 1 is 3 and the image of 3 is 6 

in the product. Thus we get the product as.
   
   

      
   
   

/  (                   ).  

Note: For the product of disjoint cycles we have the following important theorem. 

Theorem 2: If             two disjoint cycles, then      i.e., the product of disjoint cycles 

is commutative. 

Proof:  We have, 

                                                                                        

So, it follows that the symbols permuted by f are left unchanged by g and also the symbols 

permuted by g are left unchanged by f. Hence         

For example, consider the cycles   (   )      (   )   

Here    (   )(   )   .
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Inverse of a cyclic permutation 

We have seen that a cyclic permutation is nothing but a simple expression of a permutation of 

two-rowed form. So, a cyclic permutation must have its inverse. We can find the inverse of the 

cyclic permutation by first converting it to two-rowed expression and then exchanging its rows in 

general. But this is somewhat lengthy to some extent and hence time consuming. We can find the 

inverse of the cyclic permutation very easily in just one step using a simple rule which has been 

obtained from the following important theorem. 



Theorem 3: The inverse of a cyclic permutation is the cyclic permutation obtained by writing 

the elements in the cycle in reverse order. 

Proof: Let (                   ) be a cycle of length n. 

We need to show that (                   )   (                     ) 

We have,     (                   )(                     )  
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 Similarly, (                     ) (                   ) 
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So, it is clear that (                   )   (                     )  

Inverse of the product of cyclic permutations 

We have already seen that the symmetric set    of all permutations of degree n is a group under 

composition of mappings. Also, by property of groups, we have that 

                                              (  )                  .   

Also, from the above theorem we have found that the inverse of a cyclic permutation is the cyclic 

permutation obtained by writing the elements in the cycle in reverse order. So, we can easily find 

            and thereby (  )            

Important Note: For two disjoint cycles      , it can be verified that(  )         . This 

result is obtained by using the fact that product of disjoint cycles is always commutative. 

Transpositions 

A cycle of length 2 or a 2-cycle is called a transposition. For example, (1 2), (3 5), (2 4) are all 

transpositions. 

Note:  

1. The concept of transpositions leads us to define even and odd permutations and also to 

introduce the concept of alternating groups. 



2. The inverse of a transposition is the transposition itself. For example, consider the 

transposition (2 6). Here (2  6)(2  6) = .
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 = .
   
   

      
   
   

/   . Hence (   )   (   )   

Some Important Results on the Product of permutations 

Below we give some important results related to product of permutations in the form of theorems 

without proofs but with proper verifications: 

Theorem 1: Every permutation can be expressed as a product of disjoint cycles. 

Verification:  

Consider the permutation  .
   
   

     
   
   

     
  
  

/.  

We can easily check that   (   )(   )                             

Theorem 2: Every cycle can be expressed as a product of transpositions in infinitely many ways. 

Verification: Consider the cycle   (         ) 

By actual multiplication, we can check that 

                                   (         )  (  )(  )(  )(  ) 

Since the inverse of a transposition is the transposition itself, so for a transposition, say (  )  

we have,  

           (  )(  )     (  )(  )(  )(  )   , ………. 

That is, the product of even number of (  )   will give us the identity permutation only. So, 

the insertion of any even number of a particular transposition between any two transpositions or 

at both the ends of the cycle f doesn’t change it. This insertion can be done in infinitely many 

ways. Therefore, f can be expressed as a product of transpositions in infinitely many ways.  

Theorem 3: Every permutation can be expressed as a product of transpositions in infinitely 

many ways. 

This theorem is an outcome of combining the results in Theorem1 and Theorem2. 

Theorem4: If a permutation is expressed as a product of transpositions, then the number of 

transpositions is either always even or always odd. 

Note: The proof of this theorem is beyond the scope of this book. But due to the fact of this 

theorem now we are at a position to define even and odd permutations. 



Even and Odd permutations 

Definition. A permutation is said to be an even permutation if it can be expressed as a product of 

an even number of transpositions and otherwise it is said to be an odd permutation. 

Corollaries on the above theorems 

Cor.1: A cycle of length n can be expressed as a product of n-1 transpositions. Therefore a cycle 

of length n is an even or odd permutation according as n is odd or even respectively. 

Cor.2: The identity permutation is an even permutation. 

Cor.3: The product of two even permutations and two odd permutations are even permutations. 

Cor.4: The product of an even permutation and an odd permutation is an odd permutation. 

Cor.5: The inverse of an even permutation is an even permutation and that of an odd 

permutation is an odd permutation. 

Total number of even permutations of degree n 

Theorem 5: Of the n! permutations of   , there are 
 

 
   number of even and 

 

 
   number of odd 

permutations. 

Proof: 

 Let there be exactly k numbers of odd permutations and m numbers of even permutations in    

so that       . Further let the k distinct odd permutations in    be                    

and the m distinct even permutations in    be                   . 

Now if       be a transposition, then by closure property in the symmetric group  , we have, 

                  ,                    are all elements of   . 

Clearly every member of the set {                  }is an even permutation and also every 

member in {                  } is an odd permutation. So, it follows that  

                       *                  +  *                   +  

And                *                  +  *                   + 

From the above facts, we have,             .  

Now                  

Further                
  

 
 



Alternating set of permutations 

The set of all the 
  

 
 even permutations in the symmetric group    is denoted by    and is called 

an alternating set of permutations of degree n.  

The Alternating group of all even permutations of degree n 

Theorem: The set    of all even permutations of degree n is a finite group of order 
  

 
 with 

respect to product of permutations. 

Proof: Closure Property:  

We have, 

                                                      . 

So,           can be expressed as products of even number of transpositions. Hence their 

product is also expressible as a product of even number of transpositions. That is,      is an 

even permutation.  Therefore,          

Associativity: We know that product of permutations is associative. Since,      , so it is also 

associative in      

Existence of identity:  

If   (   )     be any transposition, then    (   )(   )    . This implies that the identity 

permutation I is expressible as a product of even number of transpositions and hence is an even 

permutation.  

Further,               . 

Therefore      is the identity element. 

Existence of inverse:  

Let      be arbitrary. Then,  is an even permutation. 

Let   (    )(    )(    )(    )     (          )(      ) 

Then by socks-shoe property,      

    ,(    )(    )(    )     (          )(      )-   

                       = ,(      )-  ,(          )-
       ,(    )-

  ,(    )-
   

                        (      )(          )     (    )(    )(    ) 



                        (      )(          )     (    )(    )(    ) 

                                                                   

                       = an even permutation 

Therefore,        and clearly,            .  

Thus every element in    possesses its inverse in   . 

Hence    is a group itself and as a subset of    , it is a subgroup of   .  

Order of a permutation:  

If     , then there always exists positive integers     such that     . The smallest of all 

such positive integers is the order of the permutation    . 

Here we give the following two important results (without proof)  for the easy calculation of 

orders of any permutation. 

Theorem1: The order of a cyclic permutation of length m is m.  

Verification:  

Let us consider the cycle   (           ). This is a cycle of length 5. According to the 

above theorem we must have that ( )    . We verify this in the following lines. 

We have 
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Hence  ( )    

Theorem2: The order of a permutation, when expressed as a product of disjoint cycles, is the 

LCM of the lengths of the disjoint cycles.  

 



Verification:  

Let us consider the permutation  .
   
   

    
   
   

/. This can be expressed as a product 

of two disjoint cycles as  (  )(   ).   Now the LCM of the lengths 2 and 3 of the 

disjoint cycles is 6. So, according to the above theorem we must have that  ( )       

We verify this result in the following lines. 
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Thus  ( )                          (  )     (   )      

This can alternatively be done as follows: 
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Some Solved Examples 

Example1: If   .
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Example2: If   .
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/, then express      

    , and   as products of disjoint cycles. Also find their orders. 

Solution: Here,  .
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Now   .
   
   

    
   
   

/   (          )(    ) 

             .
   
   

    
   
   

/  (          )(    )   

         .
   
   

    
   
   

/  (        )(    )  

Further  ( )   ((          )(    ))     *   +     (    ) 
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Example 3: Determine which of the following permutations are even or odd:                         

   (i)   .
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/ (   )  (                )  

Solution: We have 
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               (iii)      (                )  (    )(    )(    )(    )(    )   
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Example 4: Determine the orders of the following cycles:                         

   (i)   (             )(       ) (  )  (       )(           )(   )  (           )(          )  

Solution: We have 

(i)  ( )   ((             )(       ))                    

(ii)  ( )   ((       )(           ))                    

(iii)  ( )   ((           )(          ))                   

Example 5: Write all the elements in    and     

Solution:    has 4!=24 permutations. Here all the permutations in    are listed below in the form 

of cycles or product of disjoint cycles. 

          (1), (1  2), (1  3), (1  4), (2  3), (2  4), (3  4), (1  2  3), (1  3  2) , (1  2  4), (1  4  2), (1  3  4), 

(1  4  3), (2  3  4), (2  4  3), (1  2)(3  4), (1  3)(2  4), (1  4)(2  3), (1  2  3  4), (1  2  4  3), (1  3  2  4), 

(1  3  4  2), (1  4  2  3), (1  4 3  2). 

And the 12 even permutations in    are given below in the form of cycles or product of disjoint 

cycles: 

           (1),  (1  2  3), (1  3  2) , (1  2  4), (1  4  2), (1  3  4), (1  4  3), (2  3  4), (2  4  3), (1  2)(3  4), 

(1  3)(2  4), (1  4)(2  3).   

Exercises 

1. Find the orders of (i) the alternating group    and (ii) the symmetric group    

2. Is the group    Abelian? Justify your answer. 

3. Consider the following permutations in   : 

 

  .
   
   

    
   
   

/    .
   
   

    
   
   

/    .
   
   

    
   
   

/ 

Then, 

(a) Find αβ, α2
 γ, βγ-2

, αβα-1, β-6 

(b) Express α, β, γ as products of disjoint cycles and hence find their orders. 



(c) Express α, β, γ as products of transpositions and hence determine whether they are 

odd or even permutations. 

4. What is the order of the product of a pair of disjoint cycles of lengths 4 and 6? 

5. Express each of the following permutations as a product of disjoint cycles: 

(a) (1  2  4  3) (4  2  5)   

(b) (1  3  2  5  6) (2  3) (4  6  5  1  2)   

(c)  (1 2) (1  3) (2  3) (3  4  1) 

6. What is the order of each of the following permutations: 

(a) (1  4  3) (2  6  5 7) 

(b) (2  3  4  5) ( 1  6  7) 

(c) (1  2  4) ( 3  5  7  8  6  9) 

(d) (1  2  3  5) (2  4  5  6  7) 

(e) (3  4  5) (2  4  5) 

7. Express the permutation   .
   
   

    
   
   

/ as a product of transpositions and as 

a product of disjoint cycles. Is this an element of the alternating group     What is the 

inverse and the order of    

8. If   .
   
   

    
   
   

/  then find      and      .  Also find their orders. 

9. Write all the even permutations in     Is    a non-Abelian group?  

10. Show that a cycle containing odd number of symbols is an even permutation and a cycle 

containing even number of symbols is an odd permutation. 

 

   

 

 

 

       

                                    

 


