
METRIC SPACES 

Observations: While the concept of distance is concerned, we observe the following facts: 

i) To define distance we need two points or objects in a set. 

ii) The distance between two points is always unique and a non-negative real number. 

iii) The distance from one point to itself is always zero. 

iv) The distance from one point to another point is always equal to the distance from the 

second point to the first point. 

v) If three points are given, then the distance between any two of them never exceeds the 

sum of the distances between 1
st
 point and 2

nd
 point, and 2

nd  
 point and 3

rd
 point. 

These are quite common facts seen in one, two and three dimensional spaces. On generalization 

of these facts/results, mathematicians introduced a very general kind of concept about distances 

between points in an arbitrary set, called metric, which has been defined as follows: 

Metric or a distance function:  

For a non-empty set X, a mapping       , where R is the set of real numbers, is called a 

metric or a distance function for X if the following four conditions, called metric conditions, are 

satisfied:  

                              M1)  (   )           

                              M2)  (   )        

                              M3)  (   )   (   )          [Symmetry] 

                             M4)  (   )   (   )   (   )           [Triangular Inequality] 

Metric spaces 

If d is a metric for a non-empty set X, then the pair (X, d) is called a metric space. That is, a non-

empty set together with a metric for it is a metric space. 

Pseudo-metric 

For a non-empty set X, a mapping       , where R is the set of real numbers, is called a 

pseudo-metric or semi-metric for X if the following four conditions are satisfied:  

                              m1)  (   )           

                              m2)      (   )    

                              m3)  (   )   (   )          [Symmetry] 

                             m4)  (   )   (   )   (   )           [Triangular Inequality] 



Note: For a pseudo-metric, we may have that  (   )    even if    . That is, for a pseudo-

metric,     (   )   , but not conversely. So, it clear follows that every metric is a 

pseudo-metric, but a pseudo-metric is not necessarily a metric.  

Examples of pseudo-metrics which are not metrics 

Example 1: Let R be the set of all real numbers and         such that (   )  |     |, 

for all     . Then, d is a pseudo-metric which is not a metric. 

For, m1)               |     |     (   )    

        m2)           |     |     (   )    

              But for   ,      and  (    )  |   (  ) |  |     |    

              That is, we have,  (   )    even if    . 

        m3)  (   )  |     |  | (     )|  |(     )|   (   )          

        m4)  (   )  |     |  |           |  |     |  |     | 

                                                                                                  (   )   (   )           

All the above ensure us that d is a pseudo-metric, but not a metric. 

Example 2: Let c be the set of all convergent real sequences and         such 

that (〈  〉 〈  〉)  |   |, where         are the limits of the sequences 〈  〉     〈  〉 

respectively.  Then, d is a pseudo-metric, but not a metric. 

Here, m1, m3 and m4 can easily be established as usual ways. 

For m2, let,   〈  〉       〈  〉 are two convergent real sequences in c converging to the 

same limit k. It is always possible, because if we may have many real sequences which converge 

to the same limit. For example, 〈 

 
〉 〈

 

  
〉   〈

 

  
〉  〈

 

  
〉 are some distinct sequences which converge 

to the same limit 0.  

In the above case,  (   )   (〈  〉 〈  〉)  |   |   , but   〈  〉   〈  〉     

Example 3: Let R be an equivalence relation on a non-empty set S and X be the set of all 

equivalence classes in S determined by the equivalence relation R in S. Then         such 

that 

 (   )  {
                                                         
                                                          

 

Then, d is a pseudo-metric for S. 



§ Some important inequalities useful to establish the 4
th

 metric condition M4 

1. For any                     we have, 

i) |      |  |  |  |   | 

ii) 
|      |

  |      |
 

|  |

  |  |
 

|   |

  |   |
 

iii) |              |  |  |  |   |  |   |    |   | 

 

2. Minkowski’s inequality 

i) If                                    
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iv) If                                                         
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3. Holder’s inequality 
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4. Cauchy-Schwarz inequality 

If                                              
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§ Some examples of metric spaces 

Example1: Consider the set R of real numbers and         such that  (   )  |   |, 

for all     . Then d is a metric for R. This metric is known as the usual metric for R. 

Solution:  



M1) We have, 

                                               

                                                  |   |    

                                                   (   )     [By definition of d]               

Hence, M1 is satisfied. 

M2) We have, 

                             (   )    |   |    

                                                        , | |        -      

                                                         

                  

Hence, M2 is satisfied. 

M3) We have, 

                       (   )  |   |  | (   )| 

          |   |       , |  |  | |      - 

                                                             (   )           [By definition of d]               

Hence, M3 is satisfied. 

M4). For          we have, 

                       (   )  |   |  |(   )  (   )| 

                                             |   |  |   |     , |   |  | |  | |        - 

                                                            (   )   (   )                               

Hence, M4 is satisfied. 

Thus all the metric conditions are satisfied by d and hence d is a metric for R and consequently 

(R, d=| |) is a metric space. 

Example2: Consider an arbitrary non-empty set X and         such that 

 (   )  {
           
             

 



 

Then d is a metric for X, called the discrete metric for X. 

Solution:  

M1) We have, 

                                                     

                                                   (   )        (   )    

                                                   (   )                    

Hence, M1 is satisfied. 

M2) By definition, we have, 

                                                   (   )    

On the other hand, when  (   )   , then, also we must have that       For, otherwise, we 

have that  (   )                                       

So, it follows that  (   )                         

Hence, M2 is satisfied. 

M3). Let       be arbitrary. Then, either                              

Now, if      then,   (   )     (   ) 

And if       then,  (   )     (   ). 

Thus, in all cases, we have,  (   )   (   ).   

Hence, M3 is satisfied. 

M4). Finally, let            Then, we have, either            .                

Now, if      then,   (   )         (   )     (   )      

And so,   (   )   (   )     (   )  ,  (   )   - 

That is, (   )   (   )   (   )        . 

And if       then,  (   )   . Further, in this case, z is different from at least one of x and y. 

So, it follows that at least one of  (   ) and  (   ) is equal to1. Hence, we have, 

                                      (   )   (   )     (   )  ,  (   )   - 



 That is, (   )   (   )   (   )        . 

Thus, in all cases, we have,  (   )   (   )   (   )    

Hence, M4 is satisfied. 

Thus all the metric conditions are satisfied by d and hence d is a metric for X and consequently 

(X, d) is a metric space. 

Note: From the above example it is clear that every non-empty set can be made a metric space. 

Example 3: Consider the set R of real numbers. Then, for a fixed    ,    , the set of all 

ordered n-tuples of real numbers, is the n-dimensional Euclidean space. Define           

for   (              )   (              )    such that 

(i)  (   )   (∑ (     )
  

   )
 
     

(ii)  (   )  ∑ |     |
 
      

(iii)  (   )    x *|     |            +   

Then d is a metric for     in all the above cases. 

Solution:  

i) M1] We have,  

  (              )   (              )     

                                 

                                                                   

                           (     )
                  

                           ,∑ (     )
  

   -
 

    

                            (   )    

 

M2] We have,                                                                                         

                       (   )      ,∑ (     )
  

   -
 

    

                                           (     )
                  

                                                                 

                                                                                                          

                                           (              )  (              ) 

                                               

Hence M2 is satisfied. 

 

 



M3]. We have,  
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M4]. For  (           )   (           )   (           )    , we have, 

         (   )    ,∑ (     )
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    ,∑ (           )
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                                                      ,                          -                 

                                                         ,∑ (     )
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                                                        (   )   (   ) 

  Thus  (   )   (   )   (   )            

So, d is a metric for      

 

   

ii) Here,  (   )  ∑ |     |
 
   , Now, 

 

M1].  We have,  

  (              )   (              )     

                                 

                                                                   

                           |     |                  

                           ∑ |     |
 
      

                            (   )    

 

M2]. We have,                                                                                         

                       (   )    ∑ |     |
 
      

                                           |     |                  

                                                                 

                                                                                                          

                                           (              )  (              ) 

                                               

Hence M2 is satisfied. 

 



 

M3]. We have,  

                     (   )  ∑ |     |
 
     ∑ |     |

 
      (   )                        

 

M4]. For  (           )   (           )   (           )    , we have, 

         (   )  ∑ |     |
 
    ∑ |           |

 
                                                                                     

                                                 ∑ |     |
 
                           

                                                 ∑ |  |
 
    ∑ |  |

 
                                                     

                                                 ∑ |     |
 
    ∑ |     |

 
      

                                                  (   )   (   ) 

  Thus  (   )   (   )   (   )            

So, d is a metric for      

 

iii) Here,  (   )    x *|     |            +  , Now, 

 

M1].  We have,  

  (              )   (              )     

                                 

                                                                   

                           |     |                  

                             x *|     |            +      

                            (   )    

 

M2]. We have,                                                                                         

                       (   )      x *|     |            +      

                                           |     |                  

                                                                 

                                                                                                          

                                           (              )  (              ) 

                                               

Hence M2 is satisfied. 

 

 

M3]. We have,  

                     (   )        x*|     |            +  

             x*|     |            +  

   (   )                        



 

M4]. For  (           )   (           )   (           )    , we have, 

          (   )    x*|     |            +  

                            x *|           |            +                                                                                    

                         x*|     |           +                        

                         x*|  |           +    x*|  |           +                          

                            x *|     |            +    x *|     |            +                                                                                      

                        (   )   (   ) 

  Thus  (   )   (   )   (   )            

So, d is a metric for      

§ Some important Theorems 

Theorem 1: If x, y, z are any three points in a metric space (X, d), then, 

                                           (   )  | (   )   (   )|    

Proof: By using M4 and M3, we have, 

                          (   )   (   )   (   )   (   )   (   )   

                         (   )   (   )   (   )        ( )   

  Again,    (   )   (   )   (   )   (   )   (   )   

                         * (   )   (   )+   (   )        ( )   

Now, (1) and (2) implies (   )  | (   )   (   )|.                                 □ 

Theorem 2: If x, x1, y, y1 are four points in a metric space (X, d), then, 

                         | (   )   (     )|   (    )   (     )    

Proof:  We have, 

                                      (   )   (    )   (    ) 

  (    )   (     )   (    )  

              (   )   (     )   (    )   (    )        ( )   

  Again                      (     )   (    )   (    ) 

  (    )   (   )   (    )  

              , (   )   (     )-   (    )   (    )        ( )   



Now (1) and (2) implies| (   )   (     )|   (    )   (    ).  

§ Some important Definitions  

1. Distance of a point from a set:  

If x is a point and A is a subset of a metric space (X, d), then the distance of the point x 

from the set A is denoted by d(x, A) and is defined by 

                                            (   )  i f * (   )    +    

2. Distance between two sets:  

If A and B are two subsets of a metric space (X, d), then the distance between the sets A 

and B is denoted by d( A, B) and is defined by 

                                            (   )  i f * (   )        +    

3. Diameter of a set:  

If A is a subset of a metric space (X, d), then the diameter of the set A denoted by d( A) 

and is defined by 

                                            ( )      * (   )      +    

4. Bounded metric space:  

A metric space (X, d) is said to be bounded if there exists a real number      such that   

   ( )   .   

§ Example of a bounded metric space  

Example: Let (X, d) be a metric space and           such that   (   )  
  (   )

   (   )
    

      Then,    is a metric for X, called the induced metric for X induced by the metric d, and 

(X,   ) is a bounded metric space with   ( )   .   

Solution: Since, (X, d) is a metric space, so, we have,  

                              M1)  (   )           

                              M2)  (   )        

                              M3)  (   )   (   )          

                             M4)  (   )   (   )   (   )           

Now,  

                                
 )  (   )                  (   )      (   )    

                                                                                         
  (   )

   (   )
          

                                                                                          (   )           



                                                                               

                                
 )   (   )    

  (   )

   (   )
    (   )        ,     - 

                                
 )   (   )  

  (   )

   (   )
 

  (   )

   (   )
   (   )          [By M3] 

                               
 )   (   )  
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   (   )
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  (   )   (   )

   (   )  (   )
  

                                                                                     
  (   )

   (   )  (   )
 

  (   )

   (   )  (   )
 

                                                                                   
  (   )

   (   )
 

  (   )

   (   )
 

                                                                                      (   )    (   )              

 

Thus all metric conditions are satisfied by     and so it is a metric for X. 

Further,   (   )  
  (   )

   (   )
   

 

   (   )
           So, it follows that (X,   ) is a 

bounded metric space with   (   )                                                                         □ 

Note: From the above example it is clear that every metric space, whether it is bounded or 

unbounded, is always a bounded metric space w. r. t. the induced metric.  

§ Spheres or balls in metric spaces: Open spheres and closed spheres 

Let (X, d) be a metric space and       Then, for    ,   

i) The open sphere or open ball with centre      and radius     is denoted by 

S(    )   or  B(    )    or   (  )   or   (  ) and is defined by 

                                       (  )  *     (    )   +  

ii) The closed sphere or closed ball with centre      and radius     is denoted by 

S[    -   or  B[    -    or   ,  -   or   ,  - and is defined by 

                                       ,  -  *     (    )   +  

§ Describing Open and Closed spheres in a metric space 

Example: Describe open and closed spheres in the metric spaces R and R
2 

for the usual metrics. 

Solution:  



i) The usual metric d for R is defined as (   )  |   |        .  

Then the open sphere   (  )  *     (    )   + 

                                                *    |    |   + 

                                                *               +    

                                                (         )                   

Further, the closed sphere   ,  -  *     (    )   +  

                                                       *    |    |   + 

                                                       *               +    

                                                       ,         -                   

                                                                                                     

                  That is, an open sphere in the usual metric space R is an open interval and a closed     

                  Sphere in the usual metric space R is a closed interval in R. 

        For example,     ( )  {     (   )  
 

 
}  {    |   |  

 

 
}  (

 

 
 
 

 
) 

       And,   ,  -  *     (    )   +  *    |   |   +  ,     -                                   

 

ii) The usual metric d for R
2
 is defined as 

                   (   )  √(     )  (     )     (     )   (     )     .  

Then the open sphere centred at    (   ) and radius       is given by     

                            (  )  *  (   )      (    )   + 

                                       {  (   )     √(   )  (   )   } 

                                       *  (   )     (   )  (   )    +    

                                                                 (   ) and radius                 

Further, the closed sphere  

                            ,  -  *  (   )      (    )   +  

                                      {  (   )     √(   )  (   )   } 

                                      *  (   )     (   )  (   )    +    

                                                                  (   ) and radius                                          

 Thus, an open sphere in the usual metric space R
2
 is an open disc and a closed sphere in it is a 

closed disc in R
2
. 

§ Open sets in a metric space 

In a metric space (X, d), a set     X is called an open set if for every      there is an open 

sphere   (  ) such that   (  )     That is, if at every point in A, we can always construct an 



open sphere with some radius and centred at that point such that the sphere is contained in A, 

then A is an open set.   

Example 1: Every open interval on the real line R is an open set. But a closed or a semi-closed 

interval is not an open set. 

Solution: Consider the open interval (a, b) = I in R. We need to show that I is open. 

Let     (   ) be arbitrary.  

Now,     (   )                 . Let,    i  *       +. Then, 

clearly,   ( )  (       )     

Thus, for every     (   )  there is an open sphere   ( ) such that   ( )     So, I is open. 

On the other hand, if [a, b) = I, then, any open sphere   ( )  (       ) centred at the end-

point a and for any arbitrary radius r>0, however small it may be,   ( ) contains infinitely many 

points which are not in I. For,(     )    ( )  (       ), but (     )⋂      That 

is, no point of the portion (     ) in (        is in I. Hence, I, in this case is not open. 

Similarly, we can easily prove that a closed interval is also not an open set in the usual metric 

space R. 

Example 2: Every singleton set in a discrete metric space is open.  

Solution: Let (X, d) be a discrete metric space and   * +be a singleton set in X. We need to 

show that A is open.  

Here, the only point in A is a. Now, by definition of discrete metric, for any        

  ( )  * +     . So, by definition, A is open. 

§ Theorems on Open sets 

Theorem 1: In a metric space (X, d), the null set Ф and X are open sets. 

Proof:  

i) Ф is open:  

Ф will  e o e  if  t every  oi t i  Ф we c   co  tr ct    o e    here which i  

co t i ed i  Ф  B t Ф  ei g the   ll  et  it co t i    o ele e t  t  ll  He ce the 

required criterio  for Ф to  e o e  i  automatically   ti fied  He ce Ф i  o e   

ii) X is open: 

Let       be arbitrary. Then for an arbitrary radius     , the open sphere  

  (  )  *     (    )   + is always, by its construction, contained in X.  

So, by definition of open sets, X is an open set.                                                 ⋕                                                            



Theorem 2: In a metric space (X, d), every open sphere in X is an open set. 

Proof: Let   (  )   (   ) be an open sphere in the metric space (X, d). 

We need to prove that G is an open set. For this purpose, we need to prove that for every    , 

there exists an open sphere   ( ) such that   ( )     

We have,  

                                  (  ) 

                                      (    )    

                                         (    )    

We claim that the open sphere   ( ) centred at x is such that   ( )     

We have,      ( )   (   )    

                                     (   )     (    ) 

                                     (   )   (    )    

                                     (    )                      [         (    )    (   )   (    )] 

                                        (  )    

So, it follows that   (  )    is an open set. Thus every open sphere in a metric space is open.  

Theorem 3: Arbitrary union of open sets in a metric space is again an open set. 

Proof: Let *       + be an arbitrary collection of open sets in a metric space (X, d). Then, each 

          is open. We prove that ⋃          (say) is an open set. 

We have,  

                    ⋃                            

                                                   ( )              ( )         ,             - 

                                                   ( )              ( )     ⋃           

                                                   ( )              ( )    

So, by definition of open sets, it follows that ⋃          is open.                          

Thus the union of an arbitrary collection of open sets in a metric space is also an open set. ⋕ 



Theorem 4: Finite intersection of open sets in a metric space is an open set. 

Proof: Let *                + be a finite collection of open sets in a metric space (X, d). Then, 

for each             ,   is open. We prove that ⋂   
 
      (say) is an open set. 

We have,  

                      ⋂   
 
                                

                                                    
( )          

( )                       ,             - 

 Thus we get a finite class *   
( )       

( )                    + of concentric spheres of the 

metric space (X, d) centred at the point x. So, if    i *           +  then, clearly, the open 

sphere   ( ) is such that  

                                        ( )     
( )                    .  

Now,   ( )                       ( )  ⋂   
 
     .  

Thus, for each   ,    ( )   ch th t    ( )   .  

So, by definition of open sets, it follows that ⋂   
 
       is open. 

Thus the intersection of a finite collection of open sets in a metric space is also an open set. ⋕ 

Note: Infinite intersection of open sets in a metric space is not necessarily open. E.g., consider 

the infinite collection {       . 
 

 
 
 

 
/     } of open intervals in the usual metric space R. 

Since, every open interval on the real line is open, so, it is an infinite collection of open sets in R. 

Here, ⋂   
 
    * + which is not an open set in R. For, any open sphere   ( )  (    ) centred 

at 0 is such that it contains infinite number of real numbers which are not members of* +. 

Theorem 5: A set G in a metric space (X, d) is open if and only if G is a union of open spheres in 

X.  

Proof: Let   be an open set in (X, d).  

Then, if G is empty, then G is the union of an empty collection of open spheres in X. 

If G is non-empty, then, G being open, for each            o e    here   ( )  such that            

   ( )   . Then for such open spheres at every point in G, we have that ⋃   ( )       . 

Therefore, G is a union of open spheres.  

Conversely, let, G is a union of open spheres in X. Then, since, every open sphere is an open set, 

so G is a union of open sets. Again, since arbitrary union of open sets is open, so it follows that  

G is open. 



§ Limit points or accumulation points: derived sets 

Let (X, d) be a metric space and      Then a point     is called a limit or accumulation  or 

cluster point of the set A if for every open sphere  ( ),   ( ) contains a point of A other than, 

possibly, x.  

The set of all the limit points of A is called the derived set of A and it is generally denoted by 

D(A). That is, D(A) = {     : x is a limit point of A}. 

Example 1: Consider the set A= {1, 1/2, 1/3, 1/4, ………} in the real line R with the usual metric.  

 

 

 

 

 

 

 

 

                          

 

                               

 

 

     

 

 

 

                           

                         



                      

 

                      

 

 

 

 

 

 

 

 

 

                      

 

 

      

 

  

 

 

 

 

 

 

      


